

Functional Programming in JavaScript

Functional
Programming
in JavaScript

LUIS ATENCIO

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Dean Iverson
PO Box 761 Review editor: Aleksandar Dragosavljevic
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copy editor: Tiffany Taylor
Proofreader: Katie Tennant

Technical proofreader: Daniel Lamb
Typesetter: Dennis Dalinnik

Cover designer: Leslie Haimes

ISBN: 9781617292828
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.manning.com

 To my wonderful wife, Ana.
Thank you for your unconditional support

and for being the source of passion and inspiration in my life.

brief contents
PART 1 THINK FUNCTIONALLY ..1

1 ■ Becoming functional 3

2 ■ Higher-order JavaScript 23

PART 2 GET FUNCTIONAL..55

3 ■ Few data structures, many operations 57

4 ■ Toward modular, reusable code 84

5 ■ Design patterns against complexity 117

PART 3 ENHANCING YOUR FUNCTIONAL SKILLS......................151

6 ■ Bulletproofing your code 153

7 ■ Functional optimizations 180

8 ■ Managing asynchronous events and data 205
vii

contents
preface xv
acknowledgments xvii
about this book xix

PART 1 THINK FUNCTIONALLY.......................................1

1 Becoming functional 3
1.1 Can functional programming help? 5
1.2 What is functional programming? 5

Functional programming is declarative 7 ■ Pure functions and
the problem with side effects 9 ■ Referential transparency and
substitutability 13 ■ Preserving immutable data 15

1.3 Benefits of functional programming 16
Encouraging the decomposition of complex tasks 16
Processing data using fluent chains 18 ■ Reacting to the
complexity of asynchronous applications 19

1.4 Summary 22
ix

CONTENTSx
2 Higher-order JavaScript 23
2.1 Why JavaScript? 24
2.2 Functional vs. object-oriented programming 24

Managing the state of JavaScript objects 31 ■ Treating objects
as values 32 ■ Deep-freezing moving parts 34 ■ Navigating
and modifying object graphs with lenses 37

2.3 Functions 38
Functions as first-class citizens 39 ■ Higher-order functions 40
Types of function invocation 43 ■ Function methods 44

2.4 Closures and scopes 45
Problems with the global scope 47 ■ JavaScript’s function
scope 48 ■ A pseudo-block scope 49 ■ Practical applications
of closures 50

2.5 Summary 53

PART 2 GET FUNCTIONAL ..55

3 Few data structures, many operations 57
3.1 Understanding your application’s control flow 58
3.2 Method chaining 59
3.3 Function chaining 60

Understanding lambda expressions 61 ■ Transforming data
with _.map 62 ■ Gathering results with _.reduce 65
Removing unwanted elements with _.filter 68

3.4 Reasoning about your code 70
Declarative and lazy function chains 71 ■ SQL-like data:
functions as data 75

3.5 Learning to think recursively 77
What is recursion? 77 ■ Learning to think recursively 77
Recursively defined data structures 79

3.6 Summary 83

4 Toward modular, reusable code 84
4.1 Method chains vs. function pipelines 85

Chaining methods together 86 ■ Arranging functions
in a pipeline 87

CONTENTS xi
4.2 Requirements for compatible functions 88
Type-compatible functions 88 ■ Functions and arity:
the case for tuples 89

4.3 Curried function evaluation 92
Emulating function factories 95 ■ Implementing reusable
function templates 97

4.4 Partial application and parameter binding 98
Extending the core language 100 ■ Binding into
delayed functions 101

4.5 Composing function pipelines 102
Understanding composition with HTML widgets 102
Functional composition: separating description from
evaluation 104 ■ Composition with functional libraries 107
Coping with pure and impure code 109 ■ Introducing point-free
programming 111

4.6 Managing control flow with functional combinators 112
Identity (I-combinator) 112 ■ Tap (K-combinator) 113
Alternation (OR-combinator) 113 ■ Sequence (S-combinator) 114
Fork (join) combinator 115

4.7 Summary 116

5 Design patterns against complexity 117
5.1 Shortfalls of imperative error handling 118

Error handling with try-catch 118 ■ Reasons not to throw
exceptions in functional programs 119 ■ Problems with
null-checking 121

5.2 Building a better solution: functors 121
Wrapping unsafe values 122 ■ Functors explained 124

5.3 Functional error handling using monads 127
Monads: from control flow to data flow 128 ■ Error handling with
Maybe and Either monads 132 ■ Interacting with external
resources using the IO monad 141

5.4 Monadic chains and compositions 144
5.5 Summary 150

CONTENTSxii
PART 3 ENHANCING YOUR FUNCTIONAL SKILLS151

6 Bulletproofing your code 153
6.1 Functional programming’s influence on unit tests 154
6.2 Challenges of testing imperative programs 155

Difficulty identifying and decomposing tasks 155
Dependency on shared resources leads to inconsistent results 157
Predefined order of execution 158

6.3 Testing functional code 159
Treating a function as a black box 159 ■ Focusing on business
logic instead of control flow 160 ■ Separating the pure from
the impure with monadic isolation 161 ■ Mocking external
dependencies 164

6.4 Capturing specifications with property-based testing 166
6.5 Measuring effectiveness through code coverage 172

Measuring the effectiveness of testing functional code 173
Measuring the complexity of functional code 177

6.6 Summary 179

7 Functional optimizations 180
7.1 Under the hood of function execution 181

Currying and the function context stack 183 ■ Challenges of
recursive code 186

7.2 Deferring execution using lazy evaluation 188
Avoiding computations with the alternation functional
combinator 189 ■ Taking advantage of shortcut fusion 190

7.3 Implementing a call-when-needed strategy 191
Understanding memoization 192 ■ Memoizing computationally
intensive functions 192 ■ Taking advantage of currying and
memoization 196 ■ Decomposing to maximize memoization 196
Applying memoization to recursive calls 197

7.4 Recursion and tail-call optimization (TCO) 199
Converting non-tail calls to tail calls 201

7.5 Summary 203

CONTENTS xiii
8 Managing asynchronous events and data 205
8.1 Challenges of asynchronous code 206

Creating temporal dependencies among functions 207
Falling into a callback pyramid 208 ■ Using continuation-
passing style 210

8.2 First-class asynchronous behavior with promises 214
Future method chains 216 ■ Composing synchronous and
asynchronous behavior 221

8.3 Lazy data generation 224
Generators and recursion 226 ■ The Iterator protocol 228

8.4 Functional and reactive programming with RxJS 229
Data as observable sequences 229 ■ Functional and reactive
programming 230 ■ RxJS and promises 233

8.5 Summary 234

appendix JavaScript libraries used in this book 235

index 239

preface
When I was in college and graduate school, my class schedule was focused on object-
oriented design as the sole methodology for planning and architecting software sys-
tems. And, like many developers, I began my career writing object-oriented code and
building entire systems based on this paradigm.

 Throughout my development career, I’ve learned and followed programming lan-
guages closely, not only because I want to learn something cool, but also because I’m
intrigued by the design decisions and philosophy that each language fosters. Just as a
new language provides a different perspective on how to approach software problems,
a new paradigm can achieve the same effect. Although the object-oriented approach
continues to be the modus operandi of software design, learning about functional
programming will open your eyes to new techniques that you can use on their own or
in parallel with any other design paradigm that fits your application.

 Functional programming has been around for years, but to me it was only a minor
distraction. I had heard and read about the benefits of Haskell, Lisp, Scheme, and,
more recently, Scala, Clojure, and F# in terms of expressiveness and being highly pro-
ductive platforms; even Java, which has traditionally been known as a verbose language,
has functional artifacts that make code more succinct. Eventually, the minor distrac-
tion became impossible to avoid. And guess what? JavaScript, that object-oriented
language everyone uses, can be turned around 180 degrees and used functionally. It
turns out that this is the most powerful and effective way to use JavaScript. It took me
a long time to discover this, and in this book I want to make you aware of it so you
don’t have go on wondering why your JavaScript code is becoming so complex.
xv

PREFACExvi
 Throughout my journey as a developer, I’ve learned how to use functional pro-
gramming principles to create code that is modular, expressive, robust, easy to reason
about, and simple to test. Without a doubt, this has changed me as a software engi-
neer, so I wanted to capture and jot down my experiences somehow—perhaps in a
book. Naturally, I approached Manning, with the idea of writing a functional pro-
gramming book using the Dart programming language. I was playing around with
Dart at the time and thought that combining it with my functional background would
be a fun, unexplored, uncharted territory. I wrote a proposal, and a week later I had
an interview. During the interview, I learned that Manning was seeking a person to
write a book about functional programming in JavaScript. Because JavaScript is a lan-
guage I’m very much obsessed with, to say the least, I was thrilled to jump into this
opportunity. By writing this book, I hope to help you develop the same skills and take
your development in a new direction.

acknowledgments
Writing a book is not a trivial undertaking, and the tireless collaboration of many peo-
ple with a variety of talents brought to life the manuscript you’re holding (or reading
onscreen).

 The staff at Manning were incredible and instrumental in obtaining the level of
quality we all hoped for, and I thank all of them from the bottom of my heart. Without
them, this book would not have been possible. Special thanks to Marjan Bace and
Mike Stephens for believing in the idea of this book and in me as an author; to Marina
Michaels, for giving me a map and a flashlight to navigate this maze of book-writing
challenges; to Susan Conant, for bringing me up to speed and teaching me my first
lessons about what it means to write a technical book; to Bert Bates, for giving me my
initial sparks of creativity and for his amazing insights on how to teach programming;
and to everyone on the editorial and production teams, including Mary Piergies, Janet
Vail, Kevin Sullivan, Tiffany Taylor, Katie Tennant, Dennis Dalinnik, and many others
who worked behind the scenes.

 I can’t thank enough the amazing group of technical peer reviewers led by
Aleksandar Dragosavljevic—Amy Teng, Andrew Meredith, Becky Huett, Daniel Lamb,
David Barkol, Ed Griebel, Efran Cobisi, Ezra Simeloff, John Shea, Ken Fukuyama,
Peter Edwards, Subhasis Ghosh, Tanner Slayton, Thorsten Szutzkus, Wilfredo Manrique,
William E. Wheeler, and Yiling Lu—and the talented forum contributors. Their con-
tributions included catching technical mistakes, errors in terminology, and typos, and
making topic suggestions. Each pass through the review process and each piece of
feedback implemented through the forum topics shaped and molded the manuscript.
xvii

ACKNOWLEDGMENTSxviii
 On the technical side, special thanks to Dean Iverson, who served as the book’s
technical editor; Daniel Lamb, who served as the book’s technical proofreader; and
Brian Hanafee, for his thorough and in-depth evaluation of the entire book. They are
the best technical editors I could have hoped for.

 Last but not least, I thank my wife for always supporting me, and my family for
pushing me to become better every day and not asking why I didn’t call as often to
check in while I was writing this book. Also, thanks go to my colleagues at work for
purchasing early releases of the chapters. I am grateful to have the pleasure of work-
ing alongside such wonderful people.

about this book
Complexity is a huge beast to tame, and we’ll never get rid of it entirely; it will always
be an aspect of software development. I’ve spent countless hours and immeasurable
brainpower trying to understand what a particular piece of code does. The secret is to
control the complexity so it doesn’t grow in proportion to the size of your code base—
and functional programming can help. We’re writing more JavaScript than ever before.
We’ve gone from building small client-side event-handling routines, to heavy client-
side architectures, to complete isomorphic (server + client) JavaScript applications.
Functional programming isn’t a tool—it’s a way of thinking that can apply equally to
any of these environments.

 This book is designed to teach you how to apply functional programming tech-
niques to your code using ECMAScript 6 JavaScript. The material is presented at a
gradual, steady pace and covers both theoretical and practical aspects of functional
programming. I provide additional information for advanced readers, to help you get
deeper into some of the harder concepts.

Roadmap
This book has eight chapters and is divided into three parts that guide you from fun-
damental building blocks to more-advanced and practical applications of functional
programming.
xix

ABOUT THIS BOOKxx
 Part 1, “Think functionally,” paints a high-level landscape of functional JavaScript.
It also discusses core aspects of using JavaScript functionally and thinking like a func-
tional programmer:

■ Chapter 1 introduces some of the core functional concepts that are explained
in later chapters and prepares you to make the functional leap. It introduces
the main pillars of functional programming, including pure functions, side
effects, and declarative programming.

■ Chapter 2 establishes a level playing field for beginning and intermediate
JavaScript developers and acts as a refresher for more-advanced readers. In
addition, it’s sprinkled with basic functional programming concepts to prepare
you for the techniques discussed in part 2.

Part 2, “Get functional,” focuses on core functional programming techniques, includ-
ing function chains, currying, composition, monads, and more:

■ Chapter 3 introduces function chains and explores writing programs as combi-
nations of recursion and high-order functions like map, filter, and reduce. It
teaches these concepts using the Lodash.js framework.

■ Chapter 4 covers the popular techniques of currying and composition, which
increase the modularity of your code. Using a functional framework such as
Ramda.js, composition is the glue that orchestrates your entire JavaScript solution.

■ Chapter 5 provides a deep dive into more-theoretical areas of functional pro-
gramming, with a comprehensive and gradual discussion of functors and monads
in the context of error handling.

Part 3, “Enhancing your functional skills,” discusses the practical benefits of using
functional programming to tackle real-world challenges:

■ Chapter 6 reveals the inherent ease with which functional programs can be unit
tested. In addition, it introduces a rigorous, automated testing mode called
property-based testing.

■ Chapter 7 takes a look at JavaScript’s memory model, which is used to support
the evaluation of functions. This chapter also discusses techniques that help
optimize the execution time of functional JavaScript applications.

■ Chapter 8 introduces some of the main challenges JavaScript developers face
on a day-to-day basis when dealing with event-driven and asynchronous behav-
ior. It discusses how functional programming can provide elegant solutions to
reduce the complexity of existing imperative solutions with a related paradigm
known as reactive programming, implemented using RxJS.

Who should read this book
Functional Programming in JavaScript is written for JavaScript developers with at least a
basic understanding of object-oriented software and a general awareness of the chal-
lenges of modern web applications. Because JavaScript is such a ubiquitous language,

ABOUT THIS BOOK xxi
if you want an introduction to functional programming and prefer a familiar syntax,
you can take full advantage of this book instead of learning Haskell. (If you want to
ease your way into Haskell, this book isn’t the best resource, because each language
has its own idiosyncrasies that are best understood by learning it directly.)

 The book will help beginning and intermediate programmers heighten their
JavaScript skills with higher-order functions, closures, function currying, composition,
as well as new JavaScript ES6 features like lambda expressions, iterators, generators,
and promises. Advanced developers will enjoy the comprehensive coverage of monads
and reactive programming as well, which can help you implement innovative ways of
tackling the arduous task of dealing with event-driven and asynchronous code, taking
full advantage of the JavaScript platform.

How to use this book
If you’re a beginner or intermediate JavaScript developer and functional program-
ming is new to you, begin with chapter 1. If you’re a strong JavaScript programmer,
you can skim through chapter 2 and move quickly into chapter 3, which begins with
function chains and overall functional design.

 More-advanced users of functional JavaScript typically understand pure functions,
currying, and composition, so you may skim chapter 4 and move into functors and
monads in chapter 5.

Examples and source code
The code examples in this book use ECMAScript 6 JavaScript, which can run equally
well on either the server (Node.js) or the client. Some examples show I/O and
browser DOM APIs, but without regard for browser incompatibilities. I assume you
have experience interacting at a basic level with HTML pages and the console. No spe-
cific browser-based JavaScript is used.

 The book makes heavy use of functional JavaScript libraries like Lodash.js, Ramda.js,
and others. You can find documentation and installation information in the appendix.

 This book contains extensive code listings that showcase functional techniques
and, where appropriate, compare imperative versus functional designs. You can find
all the code samples at the publisher’s website, https://www.manning.com/books/
functional-programming-in-javascript, and on GitHub at https://github.com/luijar/
functional-programming-js.

Typographical conventions
The following conventions are used throughout the book:

■ Italic typeface is used to reference important terms.
■ Courier typeface is used to denote code listings, as well as elements and attri-

butes, methods names, classes, functions, and other programming artifacts.
■ Code annotations accompany some of the source code listings, highlighting

important concepts.

https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/functional-programming-in-javascript
https://github.com/luijar/functional-programming-js
https://github.com/luijar/functional-programming-js

ABOUT THIS BOOKxxii
About the author
Luis Atencio (@luijar) is a staff software engineer for Citrix Systems in Ft. Lauderdale,
Florida. He has a B.S. and an M.S. in Computer Science and now works full-time
developing and architecting applications using JavaScript, Java, and PHP platforms.
Luis is very involved in the community and has presented frequently at local meetups
and conferences. He blogs about software engineering at luisatencio.net, writes arti-
cles for magazines and DZone, and is also the coauthor of RxJS in Action (forthcoming
from Manning in 2017).

Author Online
Purchase of Functional Programming in JavaScript includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to https://www.manning
.com/books/functional-programming-in-javascript. This page provides information
on how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

https://www.manning.com/books/functional-programming-in-javascript
https://www.manning.com/books/functional-programming-in-javascript

Part 1

Think functionally

It’s highly probable that most of your experience building professional appli-
cations has been with an object-oriented language. You may have heard or read
about functional programming in other books, blogs, forums, and magazine
articles, but you’ve probably never written any functional code. Don’t worry; this
is to be expected. I’ve done most of my development in an object-oriented envi-
ronment as well. Writing functional code isn’t difficult, but learning to think
functionally and letting go of old habits is. The primary goal of part 1 of this
book is to lay the foundation for and prepare your mind to embrace the func-
tional techniques discussed in parts 2 and 3.

 Chapter 1 discusses what functional programming is and the mindset you
need to embrace it; it also introduces some of the most important techniques
based on pure functions, immutability, side effects, and referential transparency.
These form the backbone of all functional code and will help you transition into
functional more easily. Also, these will be the guiding principles that set the stage
for many of the design decisions we make in the following chapters.

 Chapter 2 provides a first view of JavaScript as a functional language. Because
it’s so ubiquitous and mainstream, it’s an ideal language with which to teach func-
tional programming. If you aren’t a strong JavaScript developer, this chapter will
bring you up to speed with everything you need to know to understand functional
JavaScript, such as higher-order functions, closures, and scoping rules.

Becoming functional
OO makes code understandable by encapsulating moving parts.

FP makes code understandable by minimizing moving parts.

—Michael Feathers (Twitter)

If you’re reading this book, chances are you’re a JavaScript developer with a work-
ing knowledge of object-oriented or structured design, and you’re curious about
functional programming. Perhaps you’ve tried to learn it before and haven’t been
able to apply it successfully at work or on your personal projects. In either case,
your main goal is to advance your development skills and improve the quality of
your code. This book can help you accomplish that.

This chapter covers
■ Thinking in functional terms
■ Learning the what and why of functional

programming
■ Understanding the principles of immutability

and pure functions
■ Functional programming techniques and their

impact on overall design
3

4 CHAPTER 1 Becoming functional
 The rapid pace of web platforms, the evolution of browsers, and—most impor-
tant—the demands of end users have all had a profound effect on the way we design
web applications today. Users demand that web applications feel more like a native
desktop or a mobile app with rich and responsive widgets. Naturally, these demands
force JavaScript developers to think more broadly about the solution space and to
adopt adequate programming paradigms and best practices that provide the best pos-
sible solutions.

 As developers, we gravitate toward frameworks that help us create extensible and
clean application architectures. Yet the complexity of our codebase still gets out of
control, and we’re challenged to reexamine the basic design principles of our code.
Also, the web of today is radically different than it was years ago for JavaScript develop-
ers, because we can do many things now that weren’t technically feasible before. We
can choose to write large server-side applications with Node.js or push the bulk of the
business logic onto the client, leaving a thin server behind. In either case, we need to
interact with storage technology, spawn asynchronous processes, handle events, and
much more.

 Object-oriented design helps solve part of the problem; but because JavaScript is
such a dynamic language with lots of shared state, it isn’t long before we accumulate
enough complexity to make our code unwieldy and hard to maintain. Object-oriented
design certainly moves the needle in the right direction, but we need more. Perhaps
you’ve heard the term reactive programming in recent years. This programming para-
digm facilitates working with data flows and propagation of change. In JavaScript, this
is extremely important when dealing with asynchronous or event-based code. Overall,
what we need is a programming paradigm that encourages us to think carefully about
our data and the functions that interact with it. When thinking about an application’s
design, ask yourself the following questions in terms of these design principles:

■ Extensibility—Do I constantly refactor my code to support additional functionality?
■ Easy to modularize—If I change one file, is another file affected?
■ Reusability—Is there a lot of duplication?
■ Testability—Do I struggle to unit test my functions?
■ Easy to reason about—Is my code unstructured and hard to follow?

If you answer “Yes” or “I don’t know” to any of these questions, then you’ve picked up
the right book as a guide on the path to productivity. Functional programming (FP) is
the programming paradigm you need. Although it’s based on simple concepts, FP
requires a shift in the way you think about problems. FP isn’t a new tool or an API, but
a different approach to problem solving that will become intuitive once you under-
stand the basic principles.

 In this chapter, I define what functional programming is and tell you how and why
it’s useful and important. I introduce the core principles of immutability and pure func-
tions and talk about FP techniques and how those techniques affect your approach to
designing programs. These techniques allow you to easily pick up reactive programming

5What is functional programming?
and use it to solve complex JavaScript tasks. But before we can get into all this, you
need to learn why thinking functionally is important and how it can help you tackle
the complexities of JavaScript programs.

1.1 Can functional programming help?
Learning functional programming has never been as important as it is today. The
development community and major software companies are starting to realize the
benefits of using FP techniques to power their business applications. Nowadays, most
major programming languages (Scala, Java 8, F#, Python, JavaScript, and many more)
provide either native or API-based functional support. Hence, FP skills are in high
demand now and will continue to be in the years to come.

 In the context of JavaScript, an FP mindset can be used to shape the incredibly
expressive nature of the language and help you write code that is clean, modular, test-
able, and succinct so that you can be more productive at work. For many years, we’ve
neglected the fact that JavaScript can be written more effectively in a functional style.
This neglect is partly due to an overall misunderstanding of the JavaScript language,
and also due to JavaScript’s lack of native constructs to properly manage state; it’s a
dynamic platform that places the burden of managing this state on us (the ones
responsible for introducing bugs into our applications). This may work well for small
scripts, but it becomes harder to control as your code base grows. In a way, I think FP
protects you from JavaScript itself. I discuss this further in chapter 2.

 Writing functional JavaScript code addresses most of these concerns. Using a set of
proven techniques and practices based on pure functions, you can write code that is
easy to reason about in the face of increasing complexity. Writing JavaScript function-
ally is a two-for-one deal, because you not only improve the quality of your entire
application, but also gain more proficiency in and a better understanding of the
JavaScript language.

 Because functional programming isn’t a framework or a tool, but a way of writing
code, thinking functionally is radically different from thinking in object-oriented
terms. But how do you become functional? How do you begin to think functionally?
Functional programming is intuitive once you’ve grasped its essence. Unlearning old
habits is the hardest part and can be a huge paradigm shift for most people who come
from an object-oriented background. Before you can learn to think functionally, first
you must learn what FP is.

1.2 What is functional programming?
In simple terms, functional programming is a software development style that places a
major emphasis on the use of functions. You might say, “Well, I already use functions
on a day-to-day basis at work; what’s the difference?” As I mentioned earlier, FP
requires you to think a bit differently about how to approach the tasks you’re facing.
It’s not a matter of just applying functions to come up with a result; the goal, rather, is
to abstract control flows and operations on data with functions in order to avoid side effects

6 CHAPTER 1 Becoming functional
and reduce mutation of state in your application. I know this sounds like a mouthful, but
I’ll visit each of these terms further and build on them throughout the book.

 Normally, FP books start with computing Fibonacci numbers, but I’d rather start
with a simple JavaScript program that displays text on an HTML page. What better text
to print than the good ol’ “Hello World”:

document.querySelector('#msg').innerHTML = '<h1>Hello World</h1>';

NOTE I mentioned earlier that because functional programming isn’t a spe-
cific tool, but a way of writing code, you can apply it to write client-side
(browser-based) as well as server-side applications (Node.js). Opening the
browser and typing in some code is probably the easiest way to get JavaScript
up and running, and that’s all you’ll need for this book.

This program is simple, but because everything is hardcoded, you can’t use it to dis-
play messages dynamically. Say you wanted to change the formatting, the content, or
perhaps the target element; you’d need to rewrite this entire expression. Maybe you
decide to wrap this code with a function and make the change points parameters, so
you can write it once and use it with any configuration:

function printMessage(elementId, format, message) {
document.querySelector(`#${elementId}`).innerHTML =

`<${format}>${message}</${format}>`;
}

printMessage('msg', 'h1','Hello World');

An improvement, indeed, but still not a completely reusable piece of code. Suppose
you want to write to a file instead of an HTML page. You need to take the simple
thought process of creating parameterized functions to a different level, where param-
eters aren’t just scalar values but can also be functions themselves that provide addi-
tional functionality. Functional programming is a bit like using functions on steroids,
because your sole objective is to evaluate and combine lots of functions with others to
achieve greater behavior. I’ll fast-forward a bit and show you a sneak peek at this same
program using a functional approach.

var printMessage = run(addToDom('msg'), h1, echo);

printMessage('Hello World');

Without a doubt, this looks radically different than the original. For starters, h1 isn’t a
scalar anymore; it’s a function just like addToDom and echo. Visually, it feels as though
you’re creating a function from smaller functions.

 There’s a reason for this madness. Listing 1.1 captures the process of decomposing
a program into smaller pieces that are more reusable, more reliable, and easier to

Listing 1.1 Functional printMessage

7What is functional programming?
understand, and then combining them to form an entire program that is easier to rea-
son about as a whole. Every functional program follows this fundamental principle.
For the time being, you’ll use a magical function, run,1 to invoke a series of functions
sequentially, such as addToDom, h1, and echo. I’ll explain run in detail later. Behind the
scenes, it basically links each function in a chain-like manner by passing the return
value of one as input to the next. In this case, the string “Hello World” returned from
echo is passed into h1, and the result is finally passed into addToDom.

 Why does the functional solution look this way? I like to think of it as basically
parameterizing your code so that you can easily change it in a noninvasive manner—
like adjusting an algorithm’s initial conditions. With this foundation laid, you can
now easily augment printMessage to repeat the message twice, use an h2 header,
and write to the console instead of the DOM, all without having to rewrite any of the
internal logic.

var printMessage = run(console.log, repeat(3), h2, echo);

printMessage('Get Functional');

This visually distinct approach isn’t accidental. When comparing the functional to the
nonfunctional solution, you may have noticed that there’s a radical difference in style.
Both print the same output, yet they look very different. This is due to FP’s inherent
declarative mode of development. In order to fully understand functional program-
ming, first you must learn the fundamental concepts on which it’s based:

■ Declarative programming
■ Pure functions
■ Referential transparency
■ Immutability

1.2.1 Functional programming is declarative

Functional programming falls under the umbrella of declarative programming para-
digms: it’s a paradigm that expresses a set of operations without revealing how they’re
implemented or how data flows through them. The more popular models used today,
though, are imperative or procedural, and are supported in most structured and object-
oriented languages like Java, C#, C++, and others. Imperative programming treats a
computer program as merely a sequence of top-to-bottom statements that changes the
state of the system in order to compute a result.

1 For more details on this provisional run function, visit http://mng.bz/nmax.

Listing 1.2 Extending printMessage

http://mng.bz/nmax

8 CHAPTER 1 Becoming functional
 Let’s look at a simple imperative example. Suppose you need to square all the
numbers in an array. An imperative program follows these steps:

var array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
for(let i = 0; i < array.length; i++) {
 array[i] = Math.pow(array[i], 2);
}
array; //-> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Imperative programming tells the computer, in great detail, how to perform a certain
task (looping through and applying the square formula to each number, in this case).
This is the most common way of writing this code and will most likely be your first
approach to tackling this problem.

 Declarative programming, on the other hand, separates program description from
evaluation. It focuses on the use of expressions to describe what the logic of a program
is without necessarily specifying its control flow or state changes. An example of declara-
tive programming is found in SQL statements. SQL queries are composed of statements
that describe what the outcome of a query should look like, abstracting the internal
mechanism for data retrieval. In chapter 3, I show an example of using a SQL-like
overlay over your functional code to give meaning to both your application and the
data that runs through it.

 Shifting to a functional approach to tackle this same task, you only need to be con-
cerned with applying the right behavior at each element and cede control of looping
to other parts of the system. You can let Array.map() do most of the heavy lifting:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9].map(
function(num) {

return Math.pow(num, 2);
});

//-> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Compared with the previous example, you see that this code frees you from the respon-
sibility of properly managing a loop counter and array index access; put simply, the more
code you have, the more places there are for bugs to occur. Also, standard loops aren’t
reusable artifacts unless they’re abstracted with functions. And that’s precisely what we’ll
do. In chapter 3, I demonstrate how to remove manual loops completely from your code
in favor of first-class, higher-order functions like map, reduce, and filter, which accept
functions as parameters so that your code is more reusable, extensible, and declarative.
This is what I did with the magical run function in listings 1.1 and 1.2.

 Abstracting loops with functions lets you take advantage of lambda expressions or
arrow functions, introduced in ES6 JavaScript. Lambda expressions provide a succinct
alternative to anonymous functions that can be passed in as a function argument, in
the spirit of writing less:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9].map(num => Math.pow(num, 2));

//-> [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Map takes a function
that computes the
square of each number

9What is functional programming?
Why remove loops from your code? A loop is an imperative control structure that’s
hard to reuse and difficult to plug in to other operations. In addition, it implies code
that’s constantly changing or mutating in response to new iterations. You’ll learn that
functional programs aim for statelessness and immutability as much as possible. Stateless
code has zero chance of changing or breaking global state. To achieve this, you’ll use
functions that avoid side effects and changes of state, known as pure functions.

1.2.2 Pure functions and the problem with side effects

Functional programming is based on the premise that you build immutable pro-
grams based on the building blocks of pure functions. A pure function has the fol-
lowing qualities:

■ It depends only on the input provided and not on any hidden or external state
that may change during its evaluation or between calls.

■ It doesn’t inflict changes beyond their scope, such as modifying a global object
or a parameter passed by reference.

Intuitively, any function that doesn’t meet these requirements is “impure.” Program-
ming with immutability can feel strange at first. After all, the whole point of impera-
tive design, which is what we’re accustomed to, is to declare that variables are to
mutate from one statement to the next (they’re “variable,” after all). This is a natural
thing for us to do. Consider the following function:

var counter = 0;
function increment() {
 return ++counter;
}

This function is impure because it reads/modifies an external variable, counter,
which isn’t local to the function’s scope. Generally, functions have side effects when
reading from or writing to external resources, as shown in figure 1.1. Another exam-
ple is the popular function Date.now(); its output certainly isn’t predicable and con-
sistent, because it always depends on a constantly changing factor: time.

Translating lambda notation to regular function notation
Lambda expressions provide an enormous syntactical advantage over regular func-
tion notations because they reduce the structure of a function call down to the most
important pieces. This ES6 lambda expression

num => Math.pow(num, 2)

is equivalent to the following function:

 function(num) {
return Math.pow(num, 2);

 }

10 CHAPTER 1 Becoming functional
In this case, counter is accessed via an implicit global variable (in browser-based
JavaScript, it’s the window object). Another common side effect occurs when accessing
instance data via the this keyword. The behavior of this in JavaScript is unlike it is in
any other programming language because it determines the runtime context of a
function. This often leads to code that’s hard to reason about, which is why I avoid it
when possible. I revisit this topic in the next chapter. Side effects can occur in many
situations, including these:

■ Changing a variable, property, or data structure globally
■ Changing the original value of a function’s argument
■ Processing user input
■ Throwing an exception, unless it’s caught within the same function
■ Printing to the screen or logging
■ Querying the HTML documents, browser cookies, or databases

If you’re unable to create and modify objects or print to the console, what practical
value would you get from a program like this? Indeed, pure functions can be hard to
use in a world full of dynamic behavior and mutation. But practical functional pro-
gramming doesn’t restrict all changes of state; it just provides a framework to help you
manage and reduce them, while allowing you to separate the pure from the impure.
Impure code produces externally visible side effects like those listed earlier, and in this
book I examine ways to deal with this.

 To talk more concretely about these issues, suppose you’re a developer on a team
implementing an application to manage a school’s student data. Listing 1.3 shows a
small imperative program that finds a student record by Social Security number and
renders it in the browser (again, the use of the browser is immaterial; you could just as
easily write to the console, a database, or a file). I refer to and expand this program
throughout the book as a typical, real-world scenario that involves side effects by inter-
acting with an external local object store (like an array of objects) and doing some
level of IO.

function increment () {

return ++counter;

}

� Side effect:
Global reference
was changed

var counter = 0;

Global variable

Function boundary Figure 1.1 Function increment()
causes side effects by reading/
modifying an external variable,
counter. Its result is unpredictable
because counter can change at
any time between calls.

11What is functional programming?
function showStudent(ssn) {
 var student = db.get(ssn);
 if(student !== null) {

document.querySelector(`#${elementId}`).innerHTML =
`${student.ssn},
${student.firstname},
${student.lastname}`;

 }
 else {

throw new Error('Student not found!');
 }
}

 showStudent('444-44-4444');

Let’s analyze this code further. This function clearly exposes a few side effects that rip-
ple beyond its scope:

■ It interacts with an external variable (db) for data access because the function
signature doesn’t declare this parameter. At any point in time, this reference
could become null or change from one call to the next, yielding completely
different results and compromising the integrity of the program.

■ The global variable elementId can change at any time, outside your control.
■ HTML elements are directly modified. The HTML document (DOM) is itself a

mutable, shared, global resource.
■ It can potentially throw an exception if the student isn’t found, which causes

the entire program stack to unwind and end abruptly.

The function in listing 1.3 relies on external resources, which makes the code inflexi-
ble, hard to work with, and difficult to test. Pure functions, on the other hand, have
clear contracts as part of their signatures that describe clearly all of the function’s for-
mal parameters (set of inputs), making them simpler to understand and use.

 Let’s put our functional hat on and use what you learned from the simple print-
Message program against this real-life scenario. As you become more comfortable with
functional programming in this book, you’ll continue to improve this implementation
with new techniques. At the moment, you can make two simple enhancements:

■ Separate this long function into shorter functions, each with a single purpose.
■ Reduce the number of side effects by explicitly defining all arguments needed

for the functions to carry out their job.

Let’s begin by separating the activities of fetching the student record from displaying
it on the screen. Granted, the side effects from interacting with an external storage

Listing 1.3 Imperative showStudent function with side effects

Accesses object storage to look up a student
by SSN. Assume this is a synchronous
operation for now; I deal with asynchronous
code much later in the book.

Reaches outside
the function
to read the
elementId

Throws an
exception for an
invalid studentRuns this program with

SSN 444-44-4444 and
appends the student
details to the page

12 CHAPTER 1 Becoming functional
system and the DOM are unavoidable, but at least you can make them more manage-
able and single them out from the main logic. To do this, I’ll introduce a popular FP
technique called currying. With currying, you can partially set some of the arguments
of a function in order to reduce them down to one. As shown in the next listing, you
can apply curry to reduce find and append to unary functions that can easily com-
bine via run.

var find = curry(function (db, id) {
 var obj = db.get(id);
 if(obj === null) {

throw new Error('Object not found!');
 }
 return obj;
});

var csv = (student) {
 return `${student.ssn}, ${student.firstname}, ${student.lastname}`;
};

var append = curry(function (elementId, info) {
 document.querySelector(elementId).innerHTML = info;
});

You don’t need to understand currying now, but it’s important to see that being able
to reduce the length of these functions lets you write showStudent as the combination
of these smaller parts:

var showStudent = run(
 append('#student-info'),
 csv,
 find(db));

showStudent('444-44-4444');

Although this program has been only marginally improved, it’s beginning to show
many benefits:

■ It’s a lot more flexible, because it now has three reusable components.
■ This fine-grained function reuse is a strategy for increasing your productivity,

because you can dramatically reduce the footprint of code that must be
actively managed.

■ You enhance the code’s readability by following a declarative style that provides
a clear view of the high-level steps carried out by this program.

■ More important, interaction with the HTML objects is moved into its own func-
tion, isolating the pure from the non-pure (impure) behavior. I explain curry-
ing and managing pure and impure parts in depth in chapter 4.

Listing 1.4 Decomposing the showStudent program

The find function needs a
reference to the object store and
the ID of the student to look up.

Converts a student object into
comma-separated values

To display a student’s
details on the page, you
need the element ID
and the student data.

Partially sets the HTML element
ID to use in the function

Partially sets a data
access object to point
to the students table

13What is functional programming?
This program still has some loose ends that need to be tightened, but reducing side
effects will make it less brittle to changing external conditions. If you look closer at
the find function, you’ll notice it has a null-check branching statement that can
produce an exception. For many reasons, which we’ll study later, it’s beneficial to
guarantee a consistent return value from a function, making its result consistent and
predicable. This is a quality of pure functions called referential transparency.

1.2.3 Referential transparency and substitutability

Referential transparency is a more formal way of defining a pure function. Purity in
this sense refers to the existence of a pure mapping between a function’s arguments
and its return value. Hence, if a function consistently yields the same result on the
same input, it’s said to be referentially transparent. For instance, the stateful increment
function shown earlier isn’t referentially transparent because its return value is heavily
dependent on the external variable counter. Here it is again:

var counter = 0;

function increment() {
 return ++counter;
}

In order to make it referentially transparent, you need to remove its dependent
state—the outer variable—and make it an explicit formal parameter of the function
signature. You can convert it to ES6 lambda form:

var increment = counter => counter + 1;

Now this function is stable and always returns the same output when provided with the
same input. Otherwise, the function’s return value is being influenced by some exter-
nal factor.

 We seek this quality in functions because it not only makes code easier to test, but
also allows us to reason about entire programs much more easily. Referential transparency
or equational correctness is inherited from math, but functions in programming lan-
guages behave nothing like mathematical functions; so achieving referential transpar-
ency is strictly on us. Using the magical run function again, figure 1.2 shows how to
use the imperative versus the functional version of increment.

 Programs built this way are much easier to reason about because you can form a
mental model of the state of the system and achieve the desired outcome through
rewriting or substitution. Let’s look at this more concretely and assume that any program
can be defined as a set of functions that processes a given input and produces an out-
put. Here it is in pseudo form:

Program = [Input] + [func1, func2, func3, ...] -> Output

14 CHAPTER 1 Becoming functional

e
If the functions [func1, func2, func3, ...] are pure, you can easily rewrite this pro-
gram by inlining the values produced by them—[val1, val2, val3, ...]—without
altering the result. Consider a simple example of computing a student’s average grade:

var input = [80, 90, 100];
var average = (arr) => divide(sum(arr), size(arr));
average (input); //-> 90

Because the functions sum and size are referentially transparent, you can easily
rewrite this expression for the given input as

var average = divide(270, 3); //-> 90

Because divide is always pure, it can be rewritten further using its mathematical nota-
tion; so for this input, the average is always 270/3 = 90. Referential transparency makes
it possible to reason about programs in this systematic, almost mathematical, way. The
entire program can be implemented as follows:

var sum = (total, current) => total + current;
var total = arr => arr.reduce(sum);
var size = arr => arr.length;
var divide = (a, b) => a / b;
var average = arr => divide(total(arr), size(arr));
average(input); //-> 90

Although I don’t plan to apply equational reasoning to every program in the book, it’s
important to understand that this is implicit in any purely functional program, and

increment();

increment();

print(counter); //-> ?

var plus2 = run(increment, increment);

print(run(0)); //-> 2

Functional versionImperative version

This value depends on the
state of counter and

is unpredictable if it
changes between calls.

This will always increment the
initial value by 2.

initial

Figure 1.2 Comparison of working with imperative and functional versions of
increment. The result of the imperative version is unpredictable and can be inconsistent
because the external counter variable may change at any time, compromising the result
of successive invocations of the function. The referentially transparent functional version
is always equationally correct and leaves no room for errors.

Another new function: reduce.
Just like map, reduce iterates
through an entire collection. By
providing a sum function, it can
be used to tally the result of
adding each number in the array.

In chapter 4, we’ll look at
ways of combining an averag
function into a composition.

15What is functional programming?
that it wouldn’t be possible if functions had side effects. In chapter 6, I come back to
the importance of this principle in the context of unit testing functional code. Defin-
ing all function arguments up front avoids side effects in most cases, as with scalar
values; but when objects are passed by reference, you must be cautious not to inadver-
tently mutate them.

1.2.4 Preserving immutable data

Immutable data is data that can’t be changed after it’s been created. In JavaScript, as
with many other languages, all primitive types (String, Number, and so on) are inher-
ently immutable. But other objects, like arrays, aren’t immutable; even if they’re
passed as input to a function, you can still cause a side effect by changing the original
content. Consider this simple array-sorting code:

var sortDesc = function (arr) {
 return arr.sort(function (a, b) {

return b - a;
 });
}

At a glance, this code seems perfectly fine and side effect–free. It does what you’d
expect it to do—you provide an array, and it returns the same array sorted in descend-
ing order:

var arr = [1,2,3,4,5,6,7,8,9];
sortDesc(arr); //-> [9,8,7,6,5,4,3,2,1]

Unfortunately, the Array.sort function is stateful and causes the side effect of sorting
the array in place—the original reference is changed. This is a serious flaw in the lan-
guage and one that we’ll overcome in future chapters.

 Now that you’ve had a glimpse of the fundamental principles behind functional
programming (declarative, pure, and immutable), I can express what it is more suc-
cinctly: functional programming refers to the declarative evaluation of pure functions to create
immutable programs by avoiding externally observable side effects. Not such a mouthful after
all. I’ve only scratched the surface in terms of the practical benefits of writing func-
tional applications, but by now you’re beginning to understand what it means to think
with this mindset.

 Most of the issues JavaScript developers face nowadays are due to the heavy use
of large functions that rely greatly on externally shared variables, do lots of branch-
ing, and have no clear structure. Unfortunately, this is the situation for many Java-
Script applications today—even successful ones made up of many files that execute
together, forming a shared mesh of mutable, global data that can be hard to track
and debug.

 Being forced to think in terms of pure operations and looking at functions as
sealed units of work that never mutate data can definitely reduce the potential for
bugs. Understanding these core principles is important in order to reap the benefits

16 CHAPTER 1 Becoming functional
functional programming brings to your code, which will guide you on the path to
overcoming complexity.

1.3 Benefits of functional programming
In order to benefit from functional programming, you must learn to think function-
ally and have the proper tools. In this section, I introduce some core techniques that
are indispensable for your toolbox in order to develop your functional awareness—the
instinct of looking at problems as a combination of simple functions that together
provide a complete solution. The topics introduced in this section also serve as a
brief introduction to some of the upcoming chapters in the book. If a concept is
hard to grasp now, don’t worry; it will become clearer as you progress through the
rest of the chapters.

 Now let’s explore at a high level the benefits FP brings to your JavaScript applica-
tions. The following subsections explain how it can

■ Encourage you to decompose tasks into simple functions
■ Process data using fluent chains
■ Decrease the complexity of event-driven code by enabling reactive paradigms

1.3.1 Encouraging the decomposition of complex tasks

At a high level, functional programming is effectively the interplay between decompo-
sition (breaking programs into small pieces) and composition (joining the pieces
back together). It’s this duality that makes functional programs modular and so effec-
tive. As I mentioned previously, the unit of modularity, or unit of work, is the function
itself. Thinking functionally typically begins with decomposition by learning to break
a particular task into logical subtasks (functions), as shown in the decomposition of
showStudent in figure 1.3.

If need be, these subtasks can be decomposed further until you arrive at simpler, pure
functions, each of which is an independent unit of work. Remember that this was the
thought process I followed when refactoring showStudent in listing 1.4. Modulariza-
tion in FP is closely related to the singularity principle, which states that functions
should have a single purpose; this was also evident in the code for average, shown

showStudent

append

find

csv

Figure 1.3 The process of decomposing
breaks showStudent into smaller
parts. These subtasks are independent
and simpler to understand, so that when
combined, they help solve the bigger
picture.

17Benefits of functional programming
earlier. Purity and referential transparency encourage you to think this way because in
order to glue simple functions together, they must agree on the types of inputs and
outputs. From referential transparency, you learn that a function’s complexity is some-
times directly related to the number of arguments it receives (this is merely a practical
observation and not a formal concept indicating that the lower the number of func-
tion parameters, the simpler the function tends to be).

 All along, I’ve been using run to combine functions to make up whole programs.
It’s time to uncover this dark magic. In reality, run is an alias for one the most impor-
tant techniques: composition. The composition of two functions is another function
that results from taking the output of one and plugging it into the next. Assume that
you have two functions f and g. Formally, this can be expressed as follows:

f g = f(g(x))

This formula reads “f composed of g,” which creates a loose, type-safe relationship
between g’s return value and f’s argument. The requirement for two functions to be
compatible is that they must agree in the number of arguments as well as their types.
We’ll look at this closely in chapter 3. For now, let’s diagram the composition of show-
Student in figure 1.4, this time using the correct function, compose:

var showStudent = compose(append('#student-info'), csv, find(db));

showStudent('444-44-4444');

Understanding compose is crucial for learning how to implementing modularity and
reusability in functional applications; I discuss this at length in chapter 4. Functional
composition leads to code in which the meaning of the entire expression can be
understood from the meaning of its individual pieces—a quality that becomes hard to
achieve in other paradigms.

 In addition, functional composition raises the level of abstraction so that you can
clearly outline all the steps performed in this code without being exposed to any of its
underlying details. Because compose accepts other functions as arguments, it’s known

find student csv append

showStudent

ssn, first, last444-44-4444

Figure 1.4 The flow of data when composing two functions. The return value from find must be
compatible in type and arity with the arguments to csv, which in turn returns information that append
can use. Note that in order to make the flow of data clear, I flipped the order of the function calls.

18 CHAPTER 1 Becoming functional
as a higher-order function. But composition isn’t the only way to create fluent, modular
code; in this book, you’ll also learn how to build sequences of operations by connect-
ing operations in a chain-like manner.

1.3.2 Processing data using fluent chains

In addition to map, you can import a repertoire of many higher-order functions into
any JavaScript project through some powerful and optimized functional libraries. In
chapters 3 and 4, I give a tour of many of these higher-order functions implemented
in popular JavaScript functional toolkits like Lodash.js and Ramda.js; they overlap in
many aspects, but each brings unique features that can facilitate assembling func-
tion chains.

 If you’ve written some JQuery code before, you’re probably familiar with this
idiom. A chain is a sequential invocation of functions that share a common object
return value (such as the $ or jQuery object). Like composition, this idiom allows you
to write terse and concise code, and it’s typically used a lot in functional as well as reac-
tive programming JavaScript libraries (more on this later). To show this, let’s tackle a
different problem. Suppose you’re tasked with writing a program that computes the
average grade for students who have enrolled in more than one class. Given this array
of enrollment data

let enrollment = [
 {enrolled: 2, grade: 100},
 {enrolled: 2, grade: 80},
 {enrolled: 1, grade: 89}
];

an imperative approach might look like this:

var totalGrades = 0;
var totalStudentsFound = 0;
for(let i = 0; i < enrollment.length; i++) {
 let student = enrollment [i];
 if(student !== null) {

if(student.enrolled > 1) {
totalGrades+= student.grade;
totalStudentsFound++;

}
 }
 }
 var average = totalGrades / totalStudentsFound; //-> 90

Just as before, decomposing this problem with a functional mindset, you can identify
three major steps:

■ Selecting the proper set of students (whose enrollment is greater than one)
■ Extracting their grades
■ Calculating their average grade

19Benefits of functional programming
Now you can use Lodash to stitch together functions representing these steps, form-
ing a functional chain, as shown in listing 1.5 (for a full explanation of what each of
these functions does, you can visit the appendix for directions on where to find the
proper documentation). A function chain is a lazy evaluated program, which means it
defers its execution until needed. This benefits performance because you can avoid
executing entire sequences of code that won’t be used anywhere else, saving precious
CPU cycles. This effectively simulates the call-by-need behavior built into other func-
tional languages.

_.chain(enrollment)
 .filter(student => student.enrolled > 1)
 .pluck('grade')
 .average()
 .value(); //-> 90

Don’t be too concerned at this point with everything that’s happening in this code.
For now, compare it to the imperative version, and notice how you can eliminate the
need to declare and change variables, loops, and if-else statements. As you’ll learn in
chapter 7, many imperative control-flow mechanisms like loops and branches increase
the level of complexity of your functions because they execute different paths depend-
ing on certain conditions, making them incredibly difficult to test.

 To be fair, though, this example skips a lot of error-handling code found in typical
real-world programs. Earlier, I mentioned that throwing exceptions was a cause of side
effects. Exceptions don’t exist in academic functional programming, but in real life
you won’t be able to escape them. There’s a distinction between pure error handling
and exception handling. The goal is to implement pure error handling as much as
possible and allow exceptions to fire in truly exceptional conditions, just like the ones
described earlier.

 Fortunately, by applying some purely functional design patterns, you won’t need to
sacrifice this level of expressiveness to provide robust error-handling logic for your
code. This is the main topic of discussion in chapter 5.

 So far, you’ve seen how FP can help you create modular, testable, extensible
applications. How well does it work when you need to interact with asynchronous or
event-based data coming from user input, remote web requests, file systems, or per-
sistent storage?

1.3.3 Reacting to the complexity of asynchronous applications

If you remember the last time you had to fetch remote data, handle user input, or
interact with local storage, you probably recall writing entire sections of business logic
into nested sequences of callback functions. This callback pattern breaks the linear

Listing 1.5 Programming with function chains

Calling _.value() kicks
off the execution of all
operations in the chain.

20 CHAPTER 1 Becoming functional

Side
in re
out
outs

fu
flow of your code and becomes hard to read, because it’s cluttered with nested forms
of success- and error-handling logic. This is all about to change.

 As I said earlier, learning functional programming, especially for JavaScript devel-
opers, is extremely important today. When building large applications, a lot of the
focus has shifted from object-oriented frameworks like Backbone.js to frameworks
that favor a reactive programming paradigm. Web frameworks like Angular.js are still
widely used today; but new players in the field, such as RxJS, embrace the power of FP
to tackle very challenging tasks.

 Reactive programming is probably one of the most exciting and interesting appli-
cations of functional programming. You can use it to dramatically reduce the com-
plexity in asynchronous and event-driven code that you, as JavaScript developers, deal
with on a daily basis on the client as well as the server.

 The main benefit of adopting a reactive paradigm is that it raises the level of
abstraction of your code, allowing you to focus on specific business logic while forget-
ting about the arduous boilerplate code associated with setting up asynchronous and
event-based programs. Also, this emerging paradigm takes full advantage of FP’s abil-
ity to chain or compose functions together.

 Events come in many flavors: mouse clicks, text field changes, focus changes, han-
dling new HTTP requests, database queries, file writes, and so on. Suppose you need to
read and validate a student’s SSN. A typical imperative approach might look like the
next listing.

var valid = false;
var elem = document.querySelector('#student-ssn');
elem.onkeyup = function(event) {
 var val = elem.value;
 if(val !== null && val.length !== 0) {

val = val.replace(/^\s*|\s*$|\-s/g, '');
if(val.length === 9) {

console.log(`Valid SSN: ${val}!`);
valid = true;

}
 }
 else {

console.log(`Invalid SSN: ${val}!`);
 }
};

For such a simple task, this is beginning to look complex; and the code lacks the
desired level of modularity with all business logic in a single place. Also, this function
isn’t reusable due to its dependency on external state. Because reactive programming
is based on functional programming, it benefits from the use of pure functions to pro-
cess data with the same familiar operations like map and reduce and the terseness of
lambda expressions. So learning functional is half the battle when learning reactive!

Listing 1.6 Imperative program that reads and validates a student’s SSN

 effects
aching

to data
ide the
nction
scope

Trims and cleans
up input, mutating
data in place

Nested
branching
logic

21Benefits of functional programming
This paradigm is enabled through a very important artifact called an observable. Observ-
ables let you subscribe to a stream of data that you can process by composing and
chaining operations together elegantly. Let’s see it in action and subscribe to a simple
input field for a student’s SSN.

Rx.Observable.fromEvent(document.querySelector('#student-ssn'), 'keyup')
 .map(input => input.srcElement.value)
 .filter(ssn => ssn !== null && ssn.length !== 0)
 .map(ssn => ssn.replace(/^\s*|\s*$|\-/g, ''))
 .skipWhile(ssn => ssn.length !== 9)
 .subscribe(

validSsn => console.log(`Valid SSN ${validSsn}`)
);

Can you see the similarity between listing 1.7 and programming with chains in list-
ing 1.5? This shows that whether you’re processing a collection of elements or user
input, it’s all abstracted out and treated in the exact same manner. I have much more
to say about this in chapter 8.

 One of the most important takeaways is that all the operations performed in list-
ing 1.7 are completely immutable, and all the business logic is segregated into individ-
ual functions. You don’t have to use functional with reactive, but thinking functionally
forces you to do so—and when you do, you unlock a truly amazing architecture based
on functional reactive programming (FRP).

 Functional programming is a paradigm shift that can dramatically transform the
way you tackle solutions to any programming challenges. So is FP a replacement for
the more popular object-oriented design? Fortunately, applying functional program-
ming to your code isn’t an all-or-nothing approach, as noted in the Michael Feathers
quote at the beginning of this chapter. In fact, lots of applications can benefit from
using FP alongside an object-oriented architecture. Due to rigid control for immuta-
bility and shared state, FP is also known for making multithreaded programming
more straightforward. Because JavaScript is a single-threaded platform, this isn’t
something we need to worry about or cover in this book. In the next chapter, I spend
some time highlighting some of the key differences between functional and object-
oriented design, which I believe will help you grok the functional way of thinking
more easily.

 In this chapter, I briefly touched on topics that will be covered in depth through-
out the book as you sink deeper into a functional frame of mind. If you’ve been fol-
lowing all the concepts so far, that’s great, but don’t worry if you missed a few things—
that just means you’ve picked up the right book. In traditional OOP, you’re accus-
tomed to programming in the imperative/procedural style; changing this will require
you to make a drastic shift in your thought processes as you begin to tackle problems
the “functional way.”

Listing 1.7 Functional program that reads and validates a student’s SSN

22 CHAPTER 1 Becoming functional
1.4 Summary
■ Code that uses pure functions has zero chance of changing or breaking global

state, which helps make your code more testable and maintainable.
■ Functional programming is done in a declarative style that’s easy to reason

about. This improves the overall readability of the application and makes your
code leaner through a combination of functions and lambda expressions.

■ Data processing in a collection of elements is done fluently via function chains
that link operations such as map and reduce.

■ Functional programming treats functions as building blocks by relying on
first-class, higher-order functions to improve the modularity and reusability of
your code.

■ You can reduce the complexity of event-based programs by combining func-
tional with reactive programming.

Higher-order JavaScript
Natural language has no dominant paradigm, and neither does
JavaScript. Developers can select from a grab bag of approaches—
procedural, functional, and object-oriented—and blend them as
appropriate.

—Angus Croll, If Hemingway Wrote JavaScript

As applications get bigger, so does their complexity. No matter how good you think
you are, turmoil is unavoidable if you don’t have the proper programming models

This chapter covers
■ Why JavaScript is a suitable functional

language
■ JavaScript as a language that enables

multiparadigm development
■ Immutability and policies for change
■ Understanding higher-order and first-class

functions
■ Exploring the concepts of closures and scopes
■ Practical use of closures
23

24 CHAPTER 2 Higher-order JavaScript
in place. In chapter 1, I explained the reasons functional programming is a compel-
ling paradigm to adopt. But paradigms by themselves are just programming models
that need the right host language to come to life.

 In this chapter, I take you on a fast-pass tour of a hybrid language that mixes both
object-oriented as well as functional programming: JavaScript. Of course, this is by no
means an extensive study of the language; rather, I’ll focus on what allows JavaScript
to be used functionally as well as where it falls short. One example of this is the lack of
support for immutability. In addition, this chapter covers higher-order functions and
closures, which together form the backbone that allows you to write JavaScript in a
functional style. Without further ado, let’s dive in.

2.1 Why JavaScript?
I began by answering the question, “Why functional?” Another question that comes to
mind is, “Why JavaScript?” The answer to this question is simple: omnipresence.
JavaScript is a dynamically typed, object-oriented, general-purpose language with an
immensely expressive syntax. It’s one of the most ubiquitous languages ever created
and can be seen in the development of mobile applications, websites, web servers,
desktop and embedded applications, and even databases. Given its extraordinary
adoption as the language of the web, it begs to reason that JavaScript is by far the most
widely used FP language ever created.

 Despite its C-like syntax, JavaScript draws lots of inspiration from functional lan-
guages like Lisp and Scheme. Their commonalities lie in their support for higher-
order functions, closures, array literals, and other features that make JavaScript a
superb platform for applying FP techniques. In fact, functions are the main units of
work in JavaScript, which means they’re used not only to drive the behavior of your
applications, but also to define objects, create modules, and handle events.

 JavaScript is actively evolving and improving. Backed by the ECMAScript (ES) stan-
dard, its next major release, ES6, adds many more features to the language: arrow
functions, constants, iterators, promises, and other features that suit functional pro-
gramming very well.

 Despite the fact that it has lots of powerful functional features, it’s important to
know that JavaScript is as object-oriented as it is functional. Unfortunately, the latter is
rarely seen; most developers use mutable operations, imperative control structures,
and instance state changes on objects, which are all virtually eliminated when adopt-
ing a functional style. Nevertheless, I feel it’s important to spend some time talking
about JavaScript as an object-oriented language first so that you can better appreciate
the key differences between the two paradigms. This will allow you to leap into func-
tional programming more easily.

2.2 Functional vs. object-oriented programming
Both functional and object-oriented programming (OOP) can be used to develop
midsize-to-large systems. Hybrid languages like Scala and F#, for instance, blend both

25Functional vs. object-oriented programming
paradigms into a single language. JavaScript has a similar capability, and mastering it
involves learning to use a combination of both; deciding where to draw the line
depends on personal preference and the demands of the problem you’re tackling.
Understanding where functional and object-oriented approaches intercept and differ
can help you transition from one to the other, or think in terms of either one.

 Consider a simple model for a learning-management system involving a Student
object. From a class or type hierarchy point of view, it’s natural to think of Student as
a subtype of Person, which encompasses basic attributes like first name, last name,
address, and so on.

Extra functionality can be added by deriving Student further with a more specific
type, such as CollegeStudent. At their core, object-oriented programs favor the cre-
ation of new derived objects as the principal means to gain code reuse. In this case,
CollegeStudent will reuse all the data and behavior from its parent types. But adding
more functionality to existing objects can be tricky when it doesn’t necessarily apply to
all of its descendants. Although firstname and lastname apply to Person and all of its
children, workAddress is arguably more relevant as part of an Employee object
(derived from Person) than a Student object. The reason for painting this model is
that the main difference between object-oriented and functional applications is how
this data (the object’s properties) and behavior (functions) are organized.

 Object-oriented applications, which are mostly imperative, rely heavily on object-
based encapsulation to protect the integrity of their mutable state, both direct and
inherited, in order to expose or manipulate that state via instance methods. As a
result, there’s a tight coupling between an object’s data and its fine-grained behavior,
forming a cohesive package; this is the goal in object-oriented programs and why the
central form of abstraction is the object.

 Alternatively, functional programming removes the need to hide data from the
callers and typically works with a smaller set of very simple data types. Because every-
thing is immutable, you’re free to work with objects directly, but this time through
generalized functions that live outside of an object’s scope. In other words, data is

Object-oriented JavaScript
When I define a relationship between one object and another by saying it’s a subtype
or derived type, I’m referring to the prototypal relationship that exists between the
objects. It’s important to clarify that although JavaScript is oriented-oriented, it
doesn’t have classical inheritance as you may have seen in other languages like Java.

In ES6, this mechanism for setting up prototype links between objects has been (erro-
neously, according to many) sugar-coated with keywords such as class and
extends. This makes coding object inheritance more straightforward but hides the
real work and power of JavaScript’s prototype mechanism. I won’t cover object-ori-
ented JavaScript in this book (toward the end of this chapter, I provide a reference to
a book that discusses this and other topics in depth).

26 CHAPTER 2 Higher-order JavaScript

loosely coupled to behavior. As you can see in figure 2.1, instead of fine-grained
instance methods, functional code relies on more coarse-grained operations that can
crosscut or work across many data types. In this paradigm, functions become the main
form of abstraction.

Looking at figure 2.1, you see the two paradigms differ as you move up and to the
right. In practice, some of the best object-oriented code I’ve seen uses both paradigms
together—at their intersection. To do this, you need to treat objects as immutable
entities or values and separate their functionality into functions that work on these
objects. So a method on Person that looks like this

get fullname() {
 return [this._firstname, this._lastname].join(' ');
}

can be split out as follows:

var fullname =
 person => [person.firstname, person.lastname].join(' ');

As you know, JavaScript is a dynamically typed language (which means you never have
to write explicit types next to object references), so fullname() will work with any type

Data types

Functions

Functional promotes the use of decoupled, standalone
functions that work on a small set of types.

Object-oriented favors the creation of
specialized types (via inheritance) implementing
fine-grained behavior.

Both paradigms used
together (hybrid
languages).

Figure 2.1 Object-oriented programming promotes logically connecting many data types with
specialized behavior, whereas functional programming focuses on connecting operations on those
data types via composition. There’s a sweet spot where both paradigms can be used productively.
Hybrid languages like Scala, F#, and JavaScript allow you to work with both.

With methods,
you’re encouraged to
use “this” to access
the object’s state.

“this” is effectively
replaced with the
object passed in.

27Functional vs. object-oriented programming
derived from Person (or any object with properties firstname and lastname, for that
matter), as shown in figure 2.2. Given its dynamic nature, JavaScript functions support
the use of generalized polymorphic functions. In other words, functions that use ref-
erences to base types (such as Person) work on objects of derived types (such as
Student or CollegeStudent).

As you can see in figure 2.2, separating fullname() into a standalone function
encourages you to avoid using the this reference to access object data. Using this is
problematic because it gives you access to instance-level data outside of the method
scope, which causes side effects. Using FP, object data is not intimately coupled to spe-
cific parts of your code and is far more reusable and maintainable.

 Instead of creating lots of derived types, you can extend the behavior of a function
by passing other functions as arguments. To illustrate, let’s define the simple data
model in the following listing, which contains the class Student that derives from
Person. I use this model in most of the examples throughout this book.

fullname(person)

Person

get fullname()

Student

...

Person

Student

var person = new Student('Alonzo', 'Church', '444-44-4444', 'Princeton');

p.fullname; //-> Alonzo Church

var fullname = (person) =>

[person.firstname, person.lastname].join('');

fullname(person); //-> Alonzo Church

Instance methods use “this” to
access an object’s data, which is a side effect.

Eliminates the use of “this” because the object is
explicitly supplied as a parameter and eliminates side
effects.

FP separates methods into general functions that can work
across many types.

Figure 2.2 The focus of OOP is to create inheritance hierarchies (such as Student from Parent) with
methods and data tightly bound together. Functional programming, on the other hand, favors general
polymorphic functions that crosscut different data types and avoid the use of this.

28 CHAPTER 2 Higher-order JavaScript
class Person {
 constructor(firstname, lastname, ssn) {

this._firstname = firstname;
this._lastname = lastname;
this._ssn = ssn;
this._address = null;
this._birthYear = null;

 }

 get ssn() {
return this._ssn;

 }

 get firstname() {
return this._firstname;

 }

 get lastname() {
return this._lastname;

 }

 get address() {
return this._address;

 }

 get birthYear() {
return this._birthYear;

 }

 set birthYear(year) {
this._birthYear = year;

 }

 set address(addr){
this._address = addr;

 }

 toString() {
return `Person(${this._firstname}, ${this._lastname})`;

 }
}

class Student extends Person {
 constructor(firstname, lastname, ssn, school) {

super(firstname, lastname, ssn);
this._school = school;

 }

 get school() {
return this._school;

 }
 }

Listing 2.1 Defining the Person and Student classes

Using setter methods isn’t meant to support
object mutations, but is a way to easily
create objects that have different properties
without really long constructors. After
objects are created and populated, their
state never changes (we’ll study ways to
handle this later in this chapter).

29Functional vs. object-oriented programming
Given a person, your task is to find all of their friends that live in the same country as
this person. Also, given a student, your task is to find other students living in the same
country and attending the same school. The object-oriented solution tightly couples
operations, via this and super, to the object and parent object, respectively:

// Person class
peopleInSameCountry(friends) {
 var result = [];
 for (let idx in friends) {

var friend = friends [idx];
if (this.address.country === friend.address.country) {

result.push(friend);
}

 }
 return result;
};

// Student class
studentsInSameCountryAndSchool(friends) {
 var closeFriends = super.peopleInSameCountry(friends);
 var result = [];
 for (let idx in closeFriends) {

var friend = closeFriends[idx];
if (friend.school === this.school) {

result.push(friend);
}

 }
 return result;
};

On the other hand, because FP is based on purity and referential transparency, by iso-
lating the behavior from the state you can add more operations by defining and com-
bining new functions that work on those types. Doing this, you end up with simple
objects in charge of storing data, and versatile functions that can work on those
objects as arguments, which can be composed to achieve specialized functionality. You

Finding and running code examples
The code samples for this book can be found at www.manning.com/books/functional-
programming-in-javascript and at https://github.com/luijar/functional-programming-js.
Feel free to check out the project and begin practicing functional programming on your
own. I recommend that you run any of the unit tests and play with the different pro-
grams. At the time of this writing, because not all JavaScript ES6 features have been
implemented across all browsers, I use the Babel transpiler (formerly known as 6to5)
to convert ES6 code into equivalent ES5 code.

Some features don’t need transpilation and can be turned on with a browser setting
like Chrome’s Enable Experimental JavaScript. If you’re running in experimental
mode, it’s important to enable strict mode by adding the statement 'use strict';
at the beginning of your JavaScript file.

Uses super to
request data from
the parent class

https://github.com/luijar/functional-programming-js
http://www.manning.com/books/functional-programming-in-javascript
http://www.manning.com/books/functional-programming-in-javascript

30 CHAPTER 2 Higher-order JavaScript
haven’t learned about composition yet (it’s covered in chapter 4), but it’s important to
highlight another fundamental difference between the paradigms. In essence, what
inheritance does for OOP, composition does for FP in terms of applying new behavior
to different data types.1 To run this code, you’ll use the following dataset:

var curry = new Student('Haskell', 'Curry',
'111-11-1111', 'Penn State');

curry.address = new Address('US');

var turing = new Student('Alan', 'Turing',
'222-22-2222', 'Princeton');

turing.address = new Address('England');

var church = new Student('Alonzo', 'Church',
 '333-33-3333', 'Princeton');
church.address = new Address('US');

var kleene = new Student('Stephen', 'Kleene',
 '444-44-4444', 'Princeton');
kleene.address = new Address('US');

The object-oriented approach uses the method in Student to find all other students
who attend the same school:

church.studentsInSameCountryAndSchool([curry, turing, kleene]);
//-> [kleene]

The functional solution, on the other hand, breaks the problem into smaller functions:

function selector(country, school) {
 return function(student) {

return student.address.country() === country &&
student.school() === school;

};
}

var findStudentsBy = function(friends, selector) {
 return friends.filter(selector);
};

findStudentsBy([curry, turing, church, kleene],
 selector('US', 'Princeton'));

//-> [church, kleene]

1 This reference applies more strongly to object-oriented practitioners than to the paradigm itself. Many
authorities in the field, including the Gang of Four, prefer object composition over class inheritance, based
on LSP.

Creates a selector function
that knows how to compare
students’ country and school

Navigates the object
graphs. Later in this
chapter, I’ll show you a
better approach to access
object attributes.

Uses the filter operation
on arrays and injects the
special behavior via a
selector function

31Functional vs. object-oriented programming
By applying functional programming, you create an entirely new function, find-
StudentsBy, that’s much easier to work with. Keep in mind that this new function works
with any objects that relate to Person, as well as any school and country combination.

 This clearly demonstrates the differences between the two paradigms. Object-
oriented design focuses on the nature of data and data relationships, whereas func-
tional programming focuses on the operations performed—behavior. Table 2.1 sum-
marizes other key differences that are worth noticing as I talk about them in this
chapter and others to come.

Despite their differences, building applications by blending these paradigms can be a
powerful approach. On the one hand, you get a rich domain model with natural rela-
tionships among its constituent types; and on the other, you have a set of pure func-
tions that can work on these types. Where you draw the line will depend on how
comfortable you feel using either paradigm. Because JavaScript is as object-oriented as
it is functional, using it functionally will require some special attention in terms of
controlling state changes.

2.2.1 Managing the state of JavaScript objects

The state of a program can be defined as a snapshot of the data stored in all of its
objects at any moment in time. Sadly, JavaScript is one of the worst languages when it
comes to securing an object’s state. A JavaScript object is highly dynamic, and you can
modify, add, or delete its properties at any point in time. In listing 2.1, if you expect
_address to be encapsulated (the use of the underscore is purely syntactic) within
Person, you’re wrong. You have complete access to this property outside of the class to
do whatever you please or even to delete it.

Table 2.1 Comparing some important qualities of object-oriented and functional programming. These
qualities are themes that are discussed throughout this book.

Functional Object-oriented

Unit of composition Functions Objects (classes)

Programming style Declarative Imperative

Data and behavior
Loosely coupled into pure, stand-
alone functions

Tightly coupled in classes with
methods

State management
Treats objects as immutable values Favors mutation of objects via

instance methods

Control flow Functions and recursion Loops and conditionals

Thread safety Enables concurrent programming Difficult to achieve

Encapsulation
Not needed because everything is
immutable

Needed to protect data integrity

32 CHAPTER 2 Higher-order JavaScript
 With freedom comes great responsibility. Although this may give you the liberty to
do many slick things like dynamic property creation, it can also lead to code that’s
extremely difficult to maintain in midsize-to-large programs.

 I mentioned in chapter 1 that working with pure functions makes your code easier
to maintain and reason about. Is there such a thing as a pure object? An immutable
object that contains immutable functionality can be considered pure. The same level
of reasoning that applies to functions translates just as well to simple objects. Manag-
ing state in JavaScript is crucial in our quest to use it as a functional language. There
are some practices and patterns you can use to manage immutability, which we’ll visit
in the next sections, but complete encapsulation and protection of data will weigh
heavily in your discipline to enforce it.

2.2.2 Treating objects as values

Strings and numbers are probably the easiest data types to work with in any program-
ming language. Why do you think that is? Part of the reason is that, traditionally, these
primitive types are inherently immutable, which gives us a certain peace of mind that
other user-defined types don’t. In functional programming, we call types that behave
this way values. In chapter 1, you learned to think about immutability, and this requires
effectively treating any object as a value; doing so allows you to work with functions
that pass objects around and not worry about them being altered.

 Despite all the syntactic sugar added around classes in ES6, JavaScript objects
are nothing more than bags of attributes that can be added, removed, and changed
at any time. What can you do to remedy this? Many programming languages sup-
port constructs that make an object’s properties immutable. One example is Java’s
final keyword. Also, languages like F# have immutable variables by default, unless
stated otherwise. At present, you don’t have this luxury in JavaScript. Although
JavaScript primitive types can’t be changed, the state of the variable that refers to a
primitive type can. Therefore, you need to be able to provide, or at least emulate,
immutable references to data so that your user-defined objects behave as if they
were immutable.

 ES6 uses the const keyword to create constant references. This moves the needle
in the right direction because constants can’t be reassigned or re-declared. In practi-
cal functional programming, you can use const as a means to bring simple configura-
tion data (URL strings, database names, and so on) into your functional program if
need be. Although reading from an external variable is a side effect, the platform pro-
vides special semantics to constants so they won’t change unexpectedly between func-
tion calls. Here’s an example of declaring a constant value:

const gravity_ms = 9.806;

gravity_ms = 20;

JavaScript runtime won’t
allow this reassignment

33Functional vs. object-oriented programming
But this doesn’t solve the problems of mutability to the level that FP requires. You can
prevent a variable from being reassigned, but how can you prevent an object’s internal
state from changing? This code would be perfectly acceptable:

const student = new Student('Alonzo', 'Church',
 '666-66-6666', 'Princeton');

student.lastname = 'Mourning';

What you need is a stricter policy for immutability; and encapsulation is a good strat-
egy to protect against mutations. For simple object structures, a good alternative is to
adopt the Value Object pattern. A value object is one whose equality doesn’t depend on
identity or reference, just on its value; once declared, its state may not change. In
addition to numbers and strings, some examples of value objects are types like tuple,
pair, point, zipCode, coordinate, money, date, and others. Here’s an implementa-
tion for zipCode:

function zipCode(code, location) {
 let _code = code;
 let _location = location || '';

 return {
code: function () {

return _code;
},
location: function () {

return _location;
},
fromString: function (str) {

let parts = str.split('-');
return zipCode(parts[0], parts[1]);

},
toString: function () {

return _code + '-' + _location;
}

 };
}

const princetonZip = zipCode('08544', '3345');
princetonZip.toString(); //-> '08544-3345'

In JavaScript, you can use functions and guard access to a ZIP code’s internal state by
returning an object literal interface that exposes a small set of methods to the caller and
treats _code and _location as pseudo-private variables. These variables are only acces-
sible in the object literal via closures, which you’ll see later in this chapter.

 The returned object effectively behaves like a primitive that has no mutating meth-
ods.2 Hence, the toString method, although not a pure function, behaves like one
and is a pure string representation of this object. Value objects are lightweight and

2 The object’s internal state may be protected, but its behavior is still subject to mutation because you can
dynamically remove or replace any of its methods.

Property has
been changed

34 CHAPTER 2 Higher-order JavaScript
easy to work with in both functional and OOP. In conjunction with const, you can cre-
ate objects with semantics similar to those of a string or number. Let’s consider
another example:

function coordinate(lat, long) {
 let _lat = lat;
 let _long = long;

 return {
latitude: function () {

return _lat;
},
longitude: function () {

return _long;
},
translate: function (dx, dy) {

return coordinate(_lat + dx, _long + dy);
},
toString: function () {

return '(' + _lat + ',' + _long + ')';
}

 };
}

const greenwich = coordinate(51.4778, 0.0015);
greenwich.toString(); //-> '(51.4778, 0.0015)'

Using methods to return new copies (as in translate) is another way to implement
immutability. Applying a translation operation on this object yields a new coordinate
object:

greenwich.translate(10, 10).toString(); //-> '(61.4778, 10.0015)'

Value Object is an object-oriented design pattern that was inspired by functional pro-
gramming. This is another example of how the paradigms elegantly complement each
other. This pattern is ideal, but it’s not enough for modeling entire real-world prob-
lem domains. In practice, it’s likely your code will need to handle hierarchical data (as
you saw with Person and Student earlier) as well as interact with legacy objects. Luck-
ily, JavaScript has a mechanism to emulate this using with Object.freeze.

2.2.3 Deep-freezing moving parts

JavaScript’s new class syntax doesn’t define keywords to mark fields as immutable, but
it does support an internal mechanism for doing so by controlling some hidden
object metaproperties like writable. By setting this property to false, JavaScript’s
Object.freeze() function can prevent an object’s state from changing. Let’s begin by
freezing the person object from listing 2.1:

var person = Object.freeze(new Person('Haskell', 'Curry', '444-44-4444'));
person.firstname = 'Bob';

Returns a new copy
with the translated
coordinates

Not allowed

35Functional vs. object-oriented programming
Executing the preceding code makes the attributes of person effectively read-only.
Any attempt to change them (_firstname, in this case) will result in an error:

TypeError: Cannot assign to read only property '_firstname' of #<Person>

Object.freeze() can also immobilize inherited attributes. So freezing an instance of
Student works exactly the same way and follows the object’s prototype chain protect-
ing every inherited Person attribute. But it can’t be used to freeze nested object attri-
butes, as shown in figure 2.3.

Here’s the definition for the Address type:

class Address {
 constructor(country, state, city, zip, street) {

this._country = country;
this._state = state;
this._city = city;
this._zip = zip;
this._street = street;

 }

 get street() {
return this._street;

 }

Address

Person

_firstname

_lastname

_address

_street

_city

_state

_country

_zip

person.address

writable = false

Internal objects escape the
boundaries of protection given
by Object.freeze().

Object.freeze();

writable = true

zipCode

_code

_location

writable = true

address.zip

Figure 2.3 Although the Person type has been frozen, its internal object properties (like
_address) haven’t. So person.address.country is eligible to be changed at any
time. Because only the top-level variables are frozen, this is a shallow freeze.

36 CHAPTER 2 Higher-order JavaScript

,

nt

M
pro

recu
Ob
on

(I
m
i

 get city() {
return this._city;

 }

 get state() {
return this._state;

 }

 get zip() {
return this._zip;

 }

 get country() {
return this._country;

 }
}

Unfortunately, no errors will occur in the following code:

var person = new Person('Haskell', 'Curry', '444-44-4444');
person.address = new Address(
 'US', 'NJ', 'Princeton',

zipCode('08544','1234'), 'Alexander St.');

 person = Object.freeze(person);

person.address._country = 'France'; //-> allowed!
person.address.country; //-> 'France'

Object.freeze() is a shallow operation. To get around this, you need to manually
freeze an object’s nested structure, as shown in the following listing.

var isObject = (val) => val && typeof val === 'object';

 function deepFreeze(obj) {
 if(isObject(obj)

&& !Object.isFrozen(obj)) {

Object.keys(obj).
forEach(name => deepFreeze(obj[name]));

Object.freeze(obj);
 }
 return obj;
 }

I’ve just shown some techniques you can use to enforce a level of immutability in your
code, but it’s unrealistic to expect that you can create entire applications without ever
modifying any state. Thus, strict policies when creating new objects from originals (as
with coordinate.translate()) are extremely beneficial in your quest to reduce the

Listing 2.2 Recursive function to deep-freeze an object

Skips any functions. Although
technically, functions may be
mutated in JavaScript, you wa
to focus on data properties.

Ignores objects that
have already been
frozen; freezes ones
that haven’t

aps over all
perties and
rsively calls
ject.freeze()
 non-frozen
properties

 discuss the
ap function

n chapter 3) Calls itself recursively
(I discuss recursion
in chapter 3)

Freezes the
root object

37Functional vs. object-oriented programming

ally
l
to a
ble!).
complexities and intricacies of JavaScript applications. Next, I discuss the best alterna-
tive to centrally managing object changes immutably using a functional approach
called lenses.

2.2.4 Navigating and modifying object graphs with lenses

In OOP, you’re accustomed to calling methods that change the internal contents of a
stateful object. This has the disadvantage of never being able to guarantee the outcome
of retrieving the state and may break the functionality of part of the system that expects
the object to stay intact. You could opt to implement your own copy-on-write strategy and
return new objects from each method call—a tedious and error-prone process, to say
the least. A simple setter function in the Person class would look like this:

set lastname(lastname) {
 return new Person(this._firstname, lastname, this._ssn);
};

Now imagine having to do this for every single property of every type in your domain
model. You need a solution for mutating stateful objects, in an immutable manner,
that’s unobtrusive and doesn’t require hardcoding boilerplate code everywhere. Lenses,
also known as functional references, are functional programming’s solution to accessing
and immutably manipulating attributes of stateful data types. Internally, lenses work
similarly to a copy-on-write strategy by using an internal storage component that
knows how to properly manage and copy state. You don’t need to implement this
yourself; rather, you can use a functional JavaScript library called Ramda.js (details
about using this and other libraries can be found in the appendix). By default, Ramda
exposes all of its functionality via the global object R. Using R.lensProp, you can cre-
ate a lens that wraps over the lastname property of Person:

var person = new Person('Alonzo', 'Church', '444-44-4444');
var lastnameLens = R.lenseProp('lastName');

You can use R.view to read the contents of this property:

R.view(lastnameLens, person); //-> 'Church'

This is, for all practical purposes, similar to a get lastname() method. Nothing
impressive so far. What about the setter? Here’s where the magic comes in. Now, call-
ing R.set creates and returns a brand-new copy of the object containing the new
value and preserves the original instance state (copy-on-write semantics for free!):

var newPerson = R.set(lastnameLens, 'Mourning', person);
newPerson.lastname; //-> 'Mourning'
person.lastname; //-> 'Church'

You’d have to manu
copy the state of al
other properties in
new instance (terri

38 CHAPTER 2 Higher-order JavaScript
Lenses are valuable because they give you an unobtrusive mechanism for manipulat-
ing objects, even if these are legacy objects or objects outside of your control. Lenses
also support nested properties, like the address property of Person:

person.address = new Address(
 'US', 'NJ', 'Princeton', zipCode('08544','1234'),
 'Alexander St.');

Let’s create a lens that navigates to the address.zip property:

var zipPath = ['address', 'zip'];
var zipLens = R.lens(R.path(zipPath), R.assocPath(zipPath));
R.view(zipLens, person); //-> zipCode('08544', '1234')

Because lenses implement immutable setters, you can change the nested object and
still return a new Person object:

var newPerson = R.set(zipLens, person, zipCode('90210', '5678'));

R.view(zipLens, newPerson); //-> zipCode('90210', '5678')
R.view(zipLens, person); //-> zipCode('08544', '1234')
newPerson !== person; //-> true

This is great because now you have getter and setter semantics in a functional way. In
addition to providing a protective immutable wrapper, lenses also fit extremely well
with FP’s philosophy of isolating field-access logic away from the object, eliminating
the reliance on this, and giving you powerful functions that know how to reach into
and manipulate the contents of any object.

 Now that you understand how to work with objects properly, I’ll shift gears and
address the topic of functions. Functions drive the moving pieces of your application
and are the heart of functional programming.

2.3 Functions
In functional programming, functions are the basic units of work, which means every-
thing centers around them. A function is any callable expression that can be evaluated
by applying the () operator to it. Functions can return either a computed value or
undefined (void function) back to the caller. Because FP works a lot like math, func-
tions are meaningful only when they produce a usable result (not null or undefined);
otherwise, the assumption is that they modify external data and cause side effects to
occur. For the purpose of this book, we can distinguish between expressions (functions
that produce a value) and statements (functions that don’t). Imperative and procedural
programming are mostly made up of ordered sequences of statements; but FP is
entirely expressional, so void functions don’t serve a purpose in this paradigm.

 JavaScript functions have two important characteristics that are the bread and but-
ter of its functional style: they’re first-class and higher-order. We’ll explore both of
these ideas in detail next.

Defines getter
and setter
behavior

39Functions
2.3.1 Functions as first-class citizens

In JavaScript, the term first-class comes from making functions actual objects in the
language—also called first-class citizens. You’re probably used to seeing functions
declared like this:

function multiplier(a,b) {
 return a * b;
}

But JavaScript offers more options. Like objects, a function can be

■ Assigned to variables as an anonymous function or lambda expression (I
explain the use of lambdas is more detail in chapter 3):

var square = function (x) {
 return x * x;
}

var square = x => x * x;

■ Assigned to object properties as methods:

var obj = {
 method: function (x) { return x * x; }
};

Whereas a function call uses the () operator, as in square(2), the function object is
printed as follows:

square;
// function (x) {
// return x * x;
// }

Although not common practice, functions can also be instantiated via constructors,
which is proof of their first-class nature in JavaScript. The constructor takes the set of
formal parameters, the function body, and the new keyword, like so:

var multiplier = new Function('a', 'b', 'return a * b');

multiplier(2, 3); //-> 6

In JavaScript, every function is an instance of the Function type. A function’s length
property can be used to retrieve the number of formal parameters, and methods such
as apply() and call() can be used to call functions with contexts (more about them
in the next section).

 The right side of an anonymous function expression is a function object with an
empty name property. You can use anonymous functions to extend or specialize a
function’s behavior by passing them as arguments. Consider JavaScript’s native

Anonymous
function

Lambda
expression

40 CHAPTER 2 Higher-order JavaScript
Array.sort(comparator) as an example; it takes a comparator function object. By
default, sort converts values being sorted into strings and uses their Unicode values as
natural sorting criteria. This is limiting and often not what you intend. Let’s look at a
couple of examples:

var fruit = ['Coconut', 'apples'];
fruit.sort(); //->['Coconut', 'apples']

var ages = [1, 10, 21, 2];
ages.sort(); //->[1, 10, 2, 21]

As a result, sort() is a function whose behavior is frequently driven by the criteria
implemented in the comparator function, which by itself is almost useless. You can
force proper numerical comparisons and sort a list of people by age using a custom
function argument:

people.sort((p1, p2) => p1.getAge() p2.getAge());

The comparator function takes two parameters, p1 and p2, with the following contract:

■ If comparator return less than 0, p1 comes before p2.
■ If comparator returns 0, leave p1 and p2 unchanged.
■ If comparator returns greater than 0, p1 comes after p2.

In addition to being assignable, JavaScript functions like sort() accept other func-
tions as arguments and belong to a category called higher-order functions.

2.3.2 Higher-order functions

Because functions behave like regular objects, you can intuitively expect that they can
be passed in as function arguments and returned from other functions. These are
called higher-order functions. You saw the comparator function for Array.sort(); let’s
quickly look at some other examples.

 The following snippet shows that functions can be passed in to other functions.
The applyOperation function takes two arguments and applies any operator func-
tion to both of them:

function applyOperation(a, b, opt) {
 return opt(a,b);
}

var multiplier = (a, b) => a * b;

applyOperation(2, 3, multiplier); // -> 6

In Unicode, capital
letters come before
lowercase letters.

Numbers are converted into
strings and compared with
their Unicode points.

The opt() function can be
passed as an argument to
other functions.

41Functions
In the next example, the add function takes an argument and returns a function that,
in turn, receives a second argument and adds them together:

function add(a) {
 return function (b) {

return a + b;
 }
}
add(3)(3); //-> 6

Because functions are first-class and higher-order, JavaScript functions can behave as
values, which implies that a function is nothing more than a yet-to-be-executed value
defined immutably based on the input provided to the function. This principle is
embedded in everything that you do in functional programming, especially when you
get into function chains, as you’ll see in chapter 3. When building function chains,
you’ll always rely on function names to point to a piece of a program that will be exe-
cuted as part of an entire expression.

 You can combine higher-order functions to create meaningful expressions from
smaller pieces and simplify many programs that would otherwise be tedious to write.
As an example, say you need to print a list of people who live in the United States.
Your first approach would probably look like this imperative code:

function printPeopleInTheUs(people) {
 for (let i = 0; i < people.length; i++) {

var thisPerson = people[i];
if(thisPerson.address.country === 'US') {

console.log(thisPerson);
 }
 }
}
printPeopleInTheUs([p1, p2, p3]);

Now, suppose you need to support printing people living in other countries, as well.
With higher-order functions, you can nicely abstract out the action performed on
each person: in this case, printing to the console. You can freely supply any action
function you want to a higher-order printPeople function:

function printPeople(people, action) {
 for (let i = 0; i < people.length; i++) {

action (people[i]);
 }
}

var action = function (person) {
 if(person.address.country === 'US') {

console.log(person);
 }
}

printPeople(people,action);

A function is returned
from another function.

Invokes each object’s
toString method

p1, p2, and p3 are
instances of Person.

42 CHAPTER 2 Higher-order JavaScript
A noticeable pattern that occurs in languages like JavaScript is that function names
can be passive nouns like multiplier, comparator, and action. Because they’re first-
class, functions can be assigned to variables and executed at a later time. Let’s refactor
printPeople to take full advantage of higher-order functions:

function printPeople(people, selector, printer) {
 people.forEach(function (person) {

if(selector(person)) {
printer(person);

}
 });
}

var inUs = person => person.address.country === 'US';

printPeople(people, inUs, console.log);

This is the mindset you must develop to fully embrace functional programming. This
exercise shows that the code is a lot more flexible than what you started with, because
you can quickly swap (or configure) the criteria for selection as well as change where
you want to print. Chapters 3 and 4 focus on this topic and the use of special libraries
to fluently chain operations together and build complex programs from simple parts.

In JavaScript, functions not only are invoked, they’re also applied. Let’s talk about this
unique quality of JavaScript’s function-invocation mechanism.

Looking ahead
I want to briefly pause my discussion of core JavaScript material to elaborate further
on the program in this section and combine some concepts I’ve briefly touched on.
This is a bit advanced for now, but soon you’ll learn how to build programs this way
using FP techniques. You can create supporting functions using lenses that you can
use to access an object’s properties:

var countryPath = ['address', 'country'];
var countryL = R.lens(R.path(countryPath), R.assocPath(countryPath));
var inCountry = R.curry((country, person) =>

R.equals(R.view(countryL, person), country));

This is much more functional than before:

people.filter(inCountry('US')).map(console.log);

As you can see, the country name becomes another parameter that can be changed
to anything you want. This is something to look forward to in the following chapters.

forEach is the functional-
style, preferred way of
looping; I discuss it later
in this chapter.

By using higher-order
functions, the declarative
pattern is beginning to
emerge. This expression makes
clear what this program does.

43Functions
2.3.3 Types of function invocation

JavaScript’s function-invocation mechanism is an interesting part of the language and
different from other programming languages. JavaScript gives you complete freedom
to dictate the runtime context in which a function is invoked: the value of this in the
function body. JavaScript functions can be invoked in many different ways:

■ As a global function—The reference to this is set either to the global object or
to undefined (in strict mode):

function doWork() {
 this.myVar = 'Some value';
}
doWork();

■ As a method—The reference to this is set to the owner of the method. This is an
important part of JavaScript’s object-oriented nature:

var obj = {
 prop: 'Some property',

getProp: function () {return this.prop}
};
obj.getProp();

■ As a constructor by prepending the call with new—This implicitly returns the refer-
ence to the newly created object:

function MyType(arg) {
 this.prop = arg;
}

var someVal = new MyType('some argument');

As you can see from these examples, unlike in other programming languages, the
this reference is set based on how the function is used (globally, as an object method,
as a constructor, and so son) and not by its lexical context (its location in the code).
This can lead to code that’s hard to understand, because you need to pay close atten-
tion to the context in which a function is executing.

 I included this section because it’s important for you to know as a JavaScript devel-
oper; but as I’ve indicated several times, the use of this in functional code is rarely
seen (in fact, it’s avoided at all costs). It’s heavily used by library and tool implement-
ers for special cases that demand bending the language context to perform incredible
feats. These often involve the function methods apply and call.

Calling doWork() globally
causes the “this” reference
to point to the global object.

Invoking an object’s
method points “this”
to the owning object.

Calling a function with new
sets the “this” reference to
point to the object that’s
being constructed and
implicitly returned.

44 CHAPTER 2 Higher-order JavaScript
2.3.4 Function methods

JavaScript supports calling functions via the function methods (like meta-functions)
call and apply, which belong to the function’s prototype. Both methods are used
extensively when scaffolding code is built so that API users can create new functions
from existing ones. Let’s take a quick look at writing a negate function, for example:

function negate(func) {
 return function() {

return !func.apply(null, arguments);
 };
}

function isNull(val) {
 return val === null;
}

var isNotNull = negate(isNull);

isNotNull(null); //-> false
isNotNull({}); //-> true

The negate function creates a new function that invokes its argument and then logi-
cally negates it. This example uses apply, but you could use call the same way; the dif-
ference is that the latter accepts an argument list, whereas the former takes an array of
arguments. The first argument, thisArg, can be used to manipulate the function con-
text as needed. Here are both signatures:

Function.prototype.apply(thisArg, [argsArray])

Function.prototype.call(thisArg, arg1,arg2,...)

If thisArg refers to an object, it’s set to the object the method is called on. If thisArg
is null, the function context is set to the global object, and the function behaves like a
simple global function. But if the method is a function in strict mode, the actual value
of null is passed in.

 Manipulating the function context through thisArg opens the door to many dif-
ferent techniques. This is discouraged in functional programming, because it never
relies on the context state (recall that all data is provided to functions as arguments),
so I won’t spend any more time on this feature.

 Although the notion of a shared global or object context isn’t all that useful in
functional JavaScript, there’s one specific context we care about: the function context.
To understand it, you must understand closures and scopes.

Creates the higher-order function negate,
which takes a function as input and returns
a function that negates its outcome

Uses Function.apply() to
execute this function against
the original arguments

Defines the
function isNull

Defines the function
isNotNull as the
negation of isNull

45Closures and scopes
2.4 Closures and scopes
Prior to JavaScript, closures only existed in FP languages used in certain specific appli-
cations. JavaScript is the first to adopt it into mainstream development and signifi-
cantly change the way in which we write code. Let’s revisit the zipCode type:

function zipCode(code, location) {
 let _code = code;
 let _location = location || '';

 return {
code: function () {
return _code;

},
location: function () {

return _location;
},

...
 };
}

If you examine this code closely, you’ll realize that the zipCode function returns an
object literal that seems to have full access to variables declared outside of its scope. In
other words, after zipCode has finished executing, the resulting object can still see
information declared in this enclosing function:

const princetonZip = zipCode('08544', '3345');
princetonZip.code(); //-> '08544'

This is a bit mind-bending, and it’s all thanks to the closure that forms around object
and function declarations in JavaScript. Being able to access data this way has many
practical uses; in this section, we’ll look at using closures to emulate private variables,
fetch data from the server, and force block-scoped variables.

 A closure is a data structure that binds a function to its environment at the moment
it’s declared. It’s based on the textual location of the function declaration; therefore,
a closure is also called a static or lexical scope surrounding the function definition.
Because it gives functions access to its surrounding state, it makes code clear and read-
able. As you’ll see shortly, closures are instrumental not only in functional programs
when you’re working with higher-order functions, but also for event-handling and
callbacks, emulating private variables, and mitigating some of JavaScript’s pitfalls.

 The rules that govern the behavior of a function’s closure are closely related to
JavaScript’s scoping rules. A scope groups a set of variable bindings and defines a sec-
tion of code in which a variable is defined. In essence, a closure is a function’s inheri-
tance of scopes akin to how an object’s method has access to its inherited instance
variables—both have references to their parents. Closures are readily seen in the case
of nested functions. Here’s a quick example:

46 CHAPTER 2 Higher-order JavaScript
function makeAddFunction(amount) {
 function add(number) {

return number + amount;
 }
 return add;
}

function makeExponentialFunction(base) {
 function raise (exponent) {

return Math.pow(base, exponent);
 }
 return raise;
}
var addTenTo = makeAddFunction(10);
addTenTo(10); //-> 20

var raiseThreeTo = makeExponentialFunction(3);
raiseThreeTo(2); //-> 9

It’s important to notice in this example that even though the amount and base variables
in both functions are no longer in the active scope, they’re still accessible from the
returned function when invoked. Essentially, you can imagine the nested functions add
and raise as functions that package not only their computation but also a snapshot of
all variables surrounding them. More generally, as shown in figure 2.4, a function’s clo-
sure includes the following:

■ All function parameters (params and params2, in this case)
■ All variables in the outer scope (including all global variables, of course), as

well as those declared after the function additionalVars

Let’s see this in action in the next listing.

var outerVar = 'Outer';
function makeInner(params) {
 var innerVar = 'Inner';

Listing 2.3 Closures at work

The add function is lexically bound
in makeAddFunction and has
access to the amount variable.

The function raise() is
lexically bound in
makeExponentialFunction
and has access to base.

<< outer scope (global) >>

function makeInner(params) {

<< inner scope >>

return function inner(params2) {

<< function body >>

}

var additionalVars;

}

Figure 2.4 A closure contains variables that
appear in the outer (global) scope, the parent
function’s inner scope, and the parent function’s
parameters and additional variables declared
after the function declaration. The code defined in
the function’s body can access variables and
objects defined in each of these scopes. All
functions share the global scope.

Declares the
global variable
outerVarDeclares the local

variable to makeInner

47Closures and scopes

Inv
makeI

to re
fun
 function inner() {
console.log(

`I can see: ${outerVar}, ${innerVar}, and ${params}`);
 }
 return inner;
}

var inner = makeInner('Params');
inner();

Running this code prints out the following:

'I can see: Outer, Inner, and Params'

At first glance, this may seem unintuitive and somewhat mystical. You’d expect that
local variables—innerVar in this case—would cease to exist or be garbage-collected
after makeInner returned, thereby printing undefined. Behind the scenes, it’s again
the magic of closures that makes this possible. The function returned from makeInner
remembers all the variables in the scope at the time it was declared and also prevents
them from being disposed of. The global scope is also part of this closure, giving
access to outerVar as well; I’ll revisit closures and what’s inside a function context in
chapter 7.

 You may wonder how variables (like additionalVars) declared after a function is
declared can also be included as part of its closure. To answer this, you need to under-
stand that JavaScript has three forms of scoping: global scope, function scope, and a
pseudo-block scope.

2.4.1 Problems with the global scope

Global scope is the simplest form of scoping, but also the worst. Any objects and vari-
ables declared in the outermost level of a script (not contained in any function) are
part of the global scope and accessible from all JavaScript code. Recall that our goal in
functional programming is to prevent any observable changes to ripple out from func-
tions; but in the global scope, every line that executes causes visible changes to occur.

 It’s tempting to use global variables, but they’re shared among all scripts loaded onto
the page, which can easily lead to namespace collisions if your JavaScript code isn’t pack-
aged into modules. Polluting the global namespace can be problematic because you run
the chance of overriding variables and functions declared in different files.

 Global data has the detrimental effect of making programs hard to reason about
because you’re obligated to keep a mental note of the state of all variables at any point
in time. This is one of the main reasons program complexity increases as your code
becomes larger. It’s also conducive to having side effects in your functions, because
you inevitably create external dependencies when reading from or writing to it. It
should be obvious at this point that when writing in an FP style, you’ll avoid using
global variables at all cost.

Declaration of
inner: innerVar
and outerVar are
part of inner’s
closure

okes
nner
turn
ction
inner Function inner is a valid

function that outlives the
execution of its outer function

48 CHAPTER 2 Higher-order JavaScript
2.4.2 JavaScript’s function scope

This is JavaScript’s preferred scoping mechanism. Any variables declared in a function
are local to that function and not visible anywhere else. Also, when a function returns,
any local variables declared in are deleted with it. So in the function

function doWork() {
 let student = new Student(...);
 let address = new Address(...);
 // do more work
};

the variables student and address are bound in doWork() and are inaccessible by the
outside world. As you can see in figure 2.5, resolving a variable by name is similar to
the prototype name-resolution chain described earlier. It begins by checking the
innermost scope and works its way outward. JavaScript’s scoping mechanism works
as follows:

1 It checks the variable’s function scope.
2 If not in the local scope, it moves outward into the surrounding lexical scope,

searching for the variable reference until it reaches the global scope.
3 If the variable can’t be referenced, JavaScript returns undefined.

Consider this code sample:

var x = 'Some value';
function parentFunction() {
 function innerFunction() {

console.log(x);
 }
 return innerFunction;
}
var inner = parentFunction();
inner();

When inner is called, the JavaScript runtime unwinds the lookup process for x in the
sequence shown in figure 2.5.

Request for x Defined
here?

Defined
here?

Defined
here?

Check function scope

Get value

Check parent scope Check global scope

Get value Get value

undefined

Yes

No

Yes

No

Yes

No

Figure 2.5 JavaScript’s name-resolution order, which first looks into the closest scope level
surrounding a variable lookup and moves outward. It first checks the function’s scope (local), then
moves into its parent’s scope (if there is one), and finally moves into the global scope. If the variable
x isn’t found, the function returns undefined.

49Closures and scopes
If you have experience with any other programming language, you’re probably used
to function scope. But given JavaScript’s C-like syntax, you may expect block scopes to
work in similar ways.

2.4.3 A pseudo-block scope

Unfortunately, standard ES5 JavaScript doesn’t support block-level scope, which is
formed in brackets, {}, under control structures such as for, while, if, and switch
statements. The exception is the error variable passed into a catch block. The with
statement can do some level of block scope, but its use is discouraged and is removed
in strict mode. In other C-like languages, a variable declared in an if statement
(myVar, in this case) such as the following

if (someCondition) {
 var myVar = 10;
}

isn’t accessible from outside the code block. This can be confusing for developers who
are accustomed to that style and are new to JavaScript. Because JavaScript has func-
tion scope exclusively, any variables declared in a block are accessible at any point in
the function. This can also be a nightmare for JavaScript developers, but there are
ways to overcome it. Let’s look at the problem at hand:

function doWork() {
 if (!myVar) {

var myVar = 10;
 }
 console.log(myVar); //-> 10
}
doWork();

The variable myVar is declared in the if statement, but it’s visible from outside the
block. Strangely enough, running this code prints out the value 10. This can be baf-
fling, especially for developers used to the more common block-level scope. An inter-
nal JavaScript mechanism hoists variable and function declarations to the top of the
current scope—the function scope, in this case. This can make writing loops unsafe;
pay attention to the following listing.

var arr = [1, 2, 3, 4];
function processArr() {

 function multipleBy10(val) {
i = 10;
return val * i;

 }

 for(var i = 0; i < arr.length; i++) {
arr[i] = multipleBy10(arr[i]);

 }

Listing 2.4 Ambiguous loop-counter problem

50 CHAPTER 2 Higher-order JavaScript
 return arr;
}
processArr(); //-> [10, 2, 3, 4]

The loop counter i is moved to the top of the function and becomes part of the
multipleBy10 function’s closure. Forgetting to use the keyword var in i’s declaration
fails to create a locally scoped variable in multiplyBy and accidentally modifies the
loop counter to 10. The loop-counter declaration is hoisted, set to undefined, and
then later assigned the value 0 when the loop is run. In chapter 8, you’ll see a recur-
rence of this ambiguity problem that occurs with computing nonblocking operations
in loops.

 Good IDEs and linters can help mitigate these issues, but even they aren’t much
help in the face of hundreds of lines of code. In the next chapter, we’ll look at better
solutions that are both more elegant and less error-prone than standard loops: tech-
niques that take full advantage of higher-order functions and help mitigate these pit-
falls. As you’ve seen throughout this chapter, ES6 JavaScript provides the let keyword
to help resolve this loop-counter ambiguity by properly binding the loop counter to its
enclosing block:

for(let i = 0; i < arr.length; i++) {
 // ...
}

i; // i === undefined

This is a step in the right direction, and the reason why I prefer using let than var in
scope-bounded variables, but manual loops have other shortcomings that we’ll rem-
edy in the next chapter. Now that you understand what makes up a function’s closure
and its interplay with scope mechanics, let’s turn to some practical uses of closures.

2.4.4 Practical applications of closures

Closures have many practical applications that are important to apply when imple-
menting large JavaScript programs. These aren’t specific to functional programming,
but they do take advantage of JavaScript’s function mechanism:

■ Emulating private variables
■ Making asynchronous server-side calls
■ Creating artificial block-scoped variables

EMULATING PRIVATE VARIABLES

Unlike JavaScript, many languages provide a built-in mechanism to define internal
properties of an object by setting accessibility modifiers (like private). JavaScript
doesn’t have a native keyword for private variables and functions to be accessed only
in the scope of an object. Encapsulation can play in favor of immutability because you
can’t change what you can’t access.

let resolves the hoisting
problem and scopes i in
the right place. Outside
the loop, i isn’t defined.

51Closures and scopes
 Using closures, however, it’s possible to emulate this behavior. One example is
returning an object, much like zipCode and coordinate in the earlier example. These
functions return object literals with methods that have access to any of the outer func-
tion’s local variables, but don’t expose these variables, therefore effectively making
them private.

 Closures can also provide a way to manage your global namespace to avoid globally
shared data. Library and module authors take closures to the next level by hiding an
entire module’s private methods and data. This is referred to as the Module pattern
because it uses a single immediately invoked function expression (IIFE) to encapsulate
internal variables while allowing you to export the necessary set of functionality to the
outside world and severely reduce the number of global references.

NOTE As a general best practice, I recommend packaging all of your func-
tional code inside well-encapsulated modules. You can transfer all the core
principles of functional programming you’ve learned in this book to the level
of modules.

Here’s a short sample of a module skeleton:3

var MyModule = (function MyModule(export) {
 let _myPrivateVar = ...;

 export.method1 = function () {
// do work

 };

 export.method2 = function () {
// do work

 };
}(MyModule || {}));

The object MyModule is created globally and passed into a function expression, cre-
ated with the function keyword, and immediately executed when the script is loaded.
Due to JavaScript’s function scope, _myPrivateVar and any other private variables are
local to the wrapping function. The closure surrounding the two exported methods is
what allows the object to safely access all of the module’s internal properties. This is
compelling because it keeps your global footprint low while exposing an object with

3 For a more in-depth explanation of the different types of module patterns, see Ben Cherry’s “JavaScript Mod-
ule Pattern: In-Depth,” Adequately Good, March 12, 2010, http://mng.bz/H9hk.

Names the function again so that any stack
trace information resulting from an error

clearly identifies the IIFE

Private variables aren’t
accessible from outside
this function but are
accessible to both
methods.

Methods to be exported
globally under the object’s
scope, which creates a
pseudo-namespace

Single object that privately encloses all
hidden state and methods. You can invoke
method1() using MyModule.method1().

http://mng.bz/H9hk

52 CHAPTER 2 Higher-order JavaScript
lots of encapsulated state and behavior. This module pattern has been adopted in all
the functional libraries we’ll use throughout this book.

MAKING ASYNCHRONOUS SERVER-SIDE CALLS

JavaScript’s first-class, higher-order functions can be passed into other functions as
callbacks. Callbacks are useful as hooks to handle events in an unobtrusive manner.
Suppose you need to make a request to the server and want to be notified once the
data has been received. The traditional idiom is to provide a callback function that
will handle the response:

getJSON('/students',
 (students) => {

getJSON('/students/grades',
grades => processGrades(grades),
error => console.log(error.message));

 },
 (error) =>

console.log(error.message)
)

getJSON is a higher-order function that takes two callbacks as arguments: a success
function and an error function. A common pattern that occurs with asynchronous
code as well as event handling is that you can easily corner yourself into deeply nested
function calls; this forms the unpleasant “callback pyramid of doom” when you need
to make several subsequent remote calls to the server. As you’ve probably experi-
enced, when code is deeply nested, it becomes hard to follow. In chapter 8, you’ll
learn best practices for how to basically flatten this code into more fluent and declara-
tive expressions that chain together instead of nesting.

EMULATING BLOCKED-SCOPE VARIABLES

Using closures can provide an alternative solution to the ambiguous loop-counter vari-
able example in listing 2.4. As I mentioned earlier, the underlying issue is JavaScript’s
lack of block-scope semantics, so the objective is to artificially create this block scope.
What can you do about this? Using let mitigates many of the issues with the tradi-
tional looping mechanism, but a functional approach would be to take advantage of
closures and JavaScript’s function scope and consider using forEach. Now, instead of
worrying about tying the loop counter and other variables in scope, you can effectively
wrap the loop body inside the loop as if emulating a function-scope block under the
loop statement. As you’ll learn later, this helps you call asynchronous behavior while
iterating over collections:

arr.forEach(function(elem, i) {
 ...
});

This chapter covered just the basics of JavaScript, to help you understand some of its
limitations when it’s used functionally and prepare you for the functional techniques

Processes both
responses

Handles fetching
grade errors

Handles fetching
student errors

53Summary
covered in later chapters. If you seek a much deeper understanding of the language,
there are entire books dedicated to this subject that teach the concepts of objects,
inheritance, and closures much more thoroughly.

Now that you have a solid JavaScript foundation, in the next chapter we’ll look at data
processing using some popular operations such as map, reduce, filter, and recursion.

2.5 Summary
■ JavaScript is a versatile language with a powerful inclination toward OOP and

functional programming.
■ Implementing immutability into OOP allows it to mix nicely with functional

programming.
■ Higher-order and first-class JavaScript functions provide the backbone that

allows JavaScript to be written functionally.
■ Closures have many practical uses for information hiding, module develop-

ment, and passing parameterized behavior into coarse-grained functions across
multiple data types.

Want to become a JavaScript ninja?
The topics of objects, functions, scoping, and closures covered in this chapter are
crucial to becoming a JavaScript expert. But I’ve only scratched the surface, to level
the playing field so that we can focus strictly on functional programming for the
remainder of the book. To obtain more information and take your JavaScript skills to
a ninja level, I recommend that you read Secrets of the JavaScript Ninja, Second Edition
by John Resig, Bear Bibeault, and Josip Maras (Manning, 2016, www.manning.com/
books/secrets-of-the-javascript-ninja-second-edition).

http://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
http://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
http://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition

Part 2

Get functional

Part 1 answered the two most fundamental questions about this book: Why
Functional? And why JavaScript? Now that you understand what functional pro-
gramming brings to JavaScript development, I’ll take it up a few notches. In
part 2, I’ll build on and discuss all the practical concepts and techniques you
need in order to apply functional programming to solve real-world problems. In
this part, you’ll learn what it means to “get functional.”

 Chapter 3 takes a first look at some comprehensive functional programs by
using declarative abstractions such as map, reduce, and filter, with the goal of
creating code that’s easy to reason about. It also covers the use of recursion as a
means of iterating through different forms of data in a functional style.

 Chapter 4 takes the concepts from chapter 3 and applies them to constructing
function pipelines to streamline development and write in a point-free style. You’ll
learn that the key to building functional code is breaking up complex tasks into
small, independent components that can be glued back together to form whole
solutions via the principle of compositionality. The result is a modular and reus-
able code base.

 Finally, in chapter 5 you’ll learn fundamental design patterns that combat
the increasing complexity of your applications and error handling. Functional
composition is made more reliable and robust with abstract data types like func-
tors and monads, which provide a layer of abstraction that makes your code
fault-tolerant and resilient to exceptional conditions.

56 PART 2 Get functional
 Applying the techniques discovered in part 2 will completely transform the way you
code JavaScript. Also, this sets the stage for part 3, which deals with applying functional
programming techniques to solve more-complex JavaScript problems involving asyn-
chronous data and events.

Few data structures,
many operations
Computational processes are abstract beings that inhabit computers.
As they evolve, processes manipulate other abstract things called data.

 —Harold Abelson and Gerald Jay Sussman (Structure and
Interpretation of Computer Programs, MIT Press, 1979)

Part 1 of this book accomplished two important goals: on one hand, those chapters
got your feet wet by teaching you how to think functionally and introducing the
tools you’ll need to use functional programming. Second, you took a condensed
tour of many core JavaScript features, particularly higher-order functions, that will
be used frequently throughout this chapter and the rest of the book. Now that you
know how to make functions pure, it’s time to learn how to connect them.

This chapter covers
■ Understanding program control and flow
■ Reasoning efficiently about code and data
■ Unlocking the power of map, reduce, and filter
■ Discovering the Lodash.js library and function

chains
■ Thinking recursively
57

58 CHAPTER 3 Few data structures, many operations
 In this chapter, I’ll introduce you to a few useful and practical operations like map,
reduce, and filter that allow you to traverse and transform data structures in a
sequential manner. These operations are so important that virtually all functional pro-
grams use them in one way or another. They also facilitate removing manual loops
from your code, because most loops are just specific cases handled by these functions.

 You’ll also learn to use a functional JavaScript library called Lodash.js. It lets you
process and understand not only the structure of your application, but also the struc-
ture of your data. In addition, I’ll discuss the important role recursion plays in func-
tional programming and the advantages of being able to think recursively. Building
on these concepts, you’ll learn to write concise, extensible, and declarative programs
that clearly separate control flow from the main logic of your code.

3.1 Understanding your application’s control flow
The path a program takes to arrive at a solution is known as its control flow. An impera-
tive program describes its flow or path in great detail by exposing all the necessary
steps needed to fulfill its task. These steps usually involve lots of loops and branches,
as well as variables that change with each statement. At a high level, you can depict a
simple imperative program like this:

var loop = optC();
while(loop) {
 var condition = optA();
 if(condition) {

optB1();
 }
 else {

optB2();
 }
 loop = optC();
}
optD();

Figure 3.1 shows a simple flowchart of this program.

optA

optB1

optC optD

Program execution

optB2

True

False

Loop

Figure 3.1 An imperative program made up of a series of operations (or statements) controlled by
branches and loops

59Method chaining
On the other hand, declarative programs, specifically functional ones, raise the level
of abstraction by using a minimally structured flow made up of independent black-
box operations that connect in a simple topology. These connected operations are
nothing more than higher-order functions that move state from one operation to the
next, as shown in figure 3.2. Working functionally with data structures such as arrays
lends itself to this style of development and treats data and control flow as simple con-
nections between high-level components.

This produces code more or less like the following:

optA().optB().optC().optD();

Chaining operations in this manner leads to concise, fluent, expressive programs that
let you separate a program’s control flow from its computational logic. Thus, you can
reason about your code and your data more effectively.

3.2 Method chaining
Method chaining is an OOP pattern that allows multiple methods to be called in a single
statement. When these methods all belong to the same object, method chaining is
referred to as method cascading. Although this pattern is seen mostly in object-oriented
applications, under certain conditions, such as working with immutable objects, it
works just as well with functional programming. Because mutation of objects is pro-
hibited in functional code, you may wonder how this is possible. Let’s look at a string-
manipulation example:

'Functional Programming'.substring(0, 10).toLowerCase() + ' is fun';

In this example, both substring and toLowerCase are string methods that operate on
the owning string object (via this) and return new strings. The plus (+) operator is
overloaded in JavaScript strings as syntactic sugar for concatenation—also producing
a new string. The result of applying these transformations is a string that bears no ref-
erence to the original, which remains untouched; this is to be expected, because

optA optB optC optD

Program execution

Figure 3.2 Functional control among connected black-box operations. Information flows
independently from one operation to the next (the operations are individual, pure functions).
Branches and iterations are effectively reduced or even eliminated in favor of high-level
abstractions.

Connecting via dots suggests
the presence of a shared object
that contains these methods.

60 CHAPTER 3 Few data structures, many operations
strings are, by design, immutable. From an object-oriented perspective, this is taken
for granted; but from the functional programming side, this is ideal—you don’t
require lenses to work with strings.

 If you refactor the previous code into a more functional style, it looks like this:

concat(toLowerCase(substring('Functional Programming', 1, 10))),' is fun');

This code follows the functional doctrine that all parameters should be explicitly
defined in the function declaration; it has no side effects and doesn’t mutate the orig-
inal object. Arguably, writing this function inside out isn’t as fluent as the method-
chaining approach. It’s also much harder to read, because you need to start peeling
off the wrapped functions to understand what’s truly happening.

 Chaining methods belonging to a single object instance has its place in functional
programming, as long as you respect the policy for change. Wouldn’t it be nice to
translate this pattern to work with arrays as well? The behavior we see in strings has
also been extended to work with JavaScript arrays, but most people aren’t familiar
with it and resort to quick-and-dirty for loops.

3.3 Function chaining
Object-oriented programs use inheritance as the main mechanism for code reuse.
Recall from the previous chapter that Student inherits from Person, and that all state
and methods are inherited by the child type. You may have seen this pattern predomi-
nantly in purer object-oriented languages, especially in their data structure implemen-
tations. Java, for instance, has an explosion of concrete List classes for each need:
ArrayList, LinkedList, DoublyLinkedList, CopyOnWriteArrayList, and others imple-
ment the basic List interface and derive from common parent classes, adding their
own specific functionality.

 Functional programming takes a different approach. Instead of creating new data
structure classes to meet specific needs, it uses common ones like arrays and applies a
number of coarse-grained, higher-order operations that are agnostic to the underly-
ing representation of the data. These operations are designed to do the following:

■ Accept function arguments in order to inject specialized behavior that solves
your particular task

■ Replace the traditional, manual looping mechanisms that contain mutations of
temporary variables and side effects, thereby creating less code to maintain and
fewer places where errors can occur

Let’s survey these in detail. The examples in this chapter are based on a collection of
Person objects. For brevity, I’ve declared only four objects, but the same concepts
apply to larger collections:

const p1 = new Person('Haskell', 'Curry', '111-11-1111');
p1.address = new Address('US');
p1.birthYear = 1900;

61Function chaining
const p2 = new Person('Barkley', 'Rosser', '222-22-2222');
p2.address = new Address('Greece');
p2.birthYear = 1907;

const p3 = new Person('John', 'von Neumann', '333-33-3333');
p3.address = new Address('Hungary');
p3.birthYear = 1903;

const p4 = new Person('Alonzo', 'Church', '444-44-4444');
p4.address = new Address('US');
p4.birthYear = 1903;

3.3.1 Understanding lambda expressions
Born from functional programming, lambda expressions (known as fat-arrow functions in
the JavaScript world) encode one-line anonymous functions into a shorter syntax,
compared to a traditional function declaration. You can have lambda functions with
multiple lines, but one-liners are the most commonly used, as you saw in chapter 2.
Whether you use lambdas or regular function syntax will depend on the readability of
your code; under the hood, they’re all the same. Here’s a simple example of a func-
tion used to extract a person’s name:

const name = p => p.fullname;
console.log(name(p1)); //-> 'Haskell Curry'

The compact notation (p) => p.fullname is syntactic sugar for a function that takes a
parameter p and implicitly returns p.fullname. Figure 3.3 shows the structure of this
new syntactic addition.

(param1, param2, ...) => expression;

Zero or more parameters
(parentheses are mandatory).

One line:
The return value is the
value of the expression.

Fat-arrow
notation

Multiple lines:
Executes like any regular function
body (no implicit return value).

(param1, param2, ...) => {

statement1;

statement2;

return finalStatement;

}

var lambda =

Figure 3.3 Dissecting the structure of arrow functions. The right side of a lambda function is either a
single expression or an enclosed set of multiple statements.

62 CHAPTER 3 Few data structures, many operations
Lambda expressions uphold the functional definition of a function because they
encourage you to always return a value. In fact, for one-line expressions, the return
value results from the value of the function body. Another point worth noting here is
the relationship between first-class functions and lambdas. In this case, name points
not to a concrete value, but (lazily) to a description of how to obtain it; in other words,
name points to an arrow function that knows how to compute this data. This is why, in
functional programming, you can use functions as values. I’ll discuss this concept fur-
ther in this chapter and lazy functions in chapter 7.

 Furthermore, functional programming promotes the use of three central higher-
order functions—map, reduce, and filter—that are designed to work well with
lambda expressions. A lot of functional JavaScript code is based on processing lists of
data; hence, the name of the original functional language, LISP (list processing), from
which JavaScript is derived. JavaScript 5.1 provides native versions of these operations
known as the functional array extras; but in order to create complete solutions that
may involve other similar types of operations, I’ll use the implementations provided in
a functional library called Lodash.js. Its toolkit provides important artifacts that
empower you to write functional programs, and it contains a rich repertoire of utility
functions that handle many common programming tasks (see the appendix for details
on how to install this library). Once it’s installed, you can access its functionality via
the global _ (underscore or low-dash) object. Let’s get started with _.map.

3.3.2 Transforming data with _.map

Suppose you need to transform all the elements in a large collection of data. For
instance, given a list of student objects, you want to extract each person’s full name.
How many times have you had to write this sequence of statements?

var result = [];
var persons = [p1, p2, p3, p4];
for(let i = 0; i < persons.length; i++) {
 var p = persons[i];
 if(p !== null && p !== undefined) {

result.push(p.fullname);
 }
}

The underscore in Lodash
Lodash uses the underscore convention because it began as a fork of the famous
and widely used Undesrscore.js project (http://underscorejs.org/). Lodash still tracks
Underscore’s API closely, to the point that it can serve as a drop-in replacement. But
behind the scenes, it’s a complete rewrite in favor of more elegant ways to build func-
tion chains, as well as some performance enhancements that you’ll learn about in
chapter 7.

The imperative approach
assumes fullname is a
method in Student.

http://underscorejs.org/

63Function chaining

ns.
map (also known as collect) is a higher-order function that applies an iterator func-
tion to each element in an array, in order, and returns a new array of equal length.
Here’s the same program, this time using a functional style with _.map:

_.map(persons,
 s => (s !== null && s !== undefined) ? s.fullname : ''
);

A formal definition of this operation is as follows:

map(f, [e0, e1, e2...]) -> [r0, r1, r2...]; where, f(dn) = rn

map is extremely useful for parsing through entire collections of elements without
having to write a single loop or deal with odd scoping problems. Also, it’s immutable,
because the result is an entirely new array. map works by taking a function f and a col-
lection of n elements as input; it returns a new array of size n with elements com-
puted from applying f to each element in a left-to-right manner. This is depicted in
figure 3.4.

This example of _.map iterates over an array of student objects and extracts their
names. You use a lambda expression as the iterator function (which is common).
This doesn’t change the original array but, rather, returns a new one that contains
the following:

['Haskell Curry', 'Barkley Rosser', 'John von Neumann', 'Alonzo Church']

Because it’s always beneficial to understand one level below the abstraction layer, let’s
look at how _.map could be implemented.

I got rid of all var
declarations using
higher-order functio

f f f f f f f

Map

Input array

Output array

f

Figure 3.4 The map operation applies an iterator function f to each element in an array and returns
an array of equal length.

64 CHAPTER 3 Few data structures, many operations
function map(arr, fn) {
 let idx = 0,

len = arr.length,
result = new Array(len);

 while (++idx < len) {
result[index] = fn(array[idx], idx, arr);

 }
 return result;
}

As you can see, internally, _.map is based on standard loops. This function handles
iteration on your behalf, so you’re only responsible for administering the proper func-
tionality in the iterator function instead of having to worry about mundane concerns
like incrementing loop variables and bounds checks. This is an example of how func-
tional libraries bring your code to the same level as purer functional languages.

 map is exclusively a left-to-right operation; for a right-to-left sweep, you must first
reverse the array. JavaScript’s Array.reverse() operation won’t work, because it
mutates the original array in place, but a functional equivalent of reverse can be con-
nected with map in a single statement:

_(persons).reverse().map(
 p => (p !== null && p !== undefined) ? p.fullname : ''
);

Notice the use of a slightly different syntax in this example. Lodash provides a nice,
noninvasive way to integrate your code with it. All that’s needed for it to be able to
manage your objects is for you to wrap them in the notation _(...). Afterward, you
have complete control of its powerful functional arsenal to apply any transformations
you need.

Now that you can apply a transformation function over your data, it’s useful to be able
to make conclusions or extract certain results based on the new structure. This is the
work of the reduce function.

Listing 3.1 Map implementation

Mapping over containers
The concept of mapping over data structures (in this case, an array) to transform the
constituent values has far-reaching implications. Just as you can map any function
over an array, in chapter 5 you’ll learn that you can also map a function over any
object.

Takes a function and an array, applies the
function to each element, and returns a
new array of the same size as the original

Result: An array of the
same length as the input

Applies the function fn to each
element in the array and puts
the result back into an array

65Function chaining
3.3.3 Gathering results with _.reduce

You know how to transform your data, but how do you gather meaningful results from
it? Suppose you want to compute the country with the largest count from a collection
of Person objects. You can use the reduce function to accomplish this.

 reduce is a higher-order function that compresses an array of elements down to a
single value. This value is computed from the accumulated result of invoking a func-
tion with an accumulator value against each element. This is easier to visualize by
looking at the diagram in figure 3.5.

This diagram can be expressed more formally with the following notation:

reduce(f,[e0, e1, e2, e3],accum) -> f(f(f(f(acc, e0), e1, e2, e3)))) -> R

Now, let’s look at a simplified implementation of the internals of reduce.

function reduce(arr, fn,[accumulator]) {
 let idx = -1,

len = arr.length;

 if (!accumulator && len > 0) {
accumulator = arr[++idx];

 }

 while (++idx < len) {
accumulator = fn(accumulator,
arr[idx], idx, arr);

 }
 return accumulator;
}

Listing 3.2 Implementing reduce

f f f f

Reduce

Accumulated
value

e0 e1 e2 e3

Final result

Figure 3.5 Reducing an array into a single value. Each iteration returns an accumulated
value based on the previous result; this accumulated value is kept until you reach the end
of the array. The final outcome of reduce is always a single value.

If no accumulator value is
provided, the first element of the
array is used to initialize it.

Invokes fn on each element,
passing the accumulated value
and the current element value

Returns the single
accumulated value

66 CHAPTER 3 Few data structures, many operations
reduce accepts the following parameters:

■ fn—The iterator function is executed on every value in the array and contains as
parameters the accumulated value, the current value, the index, and the array.

■ accumulator—The initial value, which is then used to store the accumulated
result that’s passed in to every subsequent function call.

Let’s write a simple program that gathers some statistics about a set of Person objects.
Suppose you want find the number of people who live in a particular country; see the
following listing.

_(persons).reduce(function (stat, person) {
 const country = person.address.country;
 stat[country] = _.isUndefined(stat[country]) ? 1 :

stat[country] + 1;
 return stat;
}, {});

Running this code converts the input array into a single object containing a represen-
tation of the population by country:

{
 'US' : 2,
 'Greece' : 1,
 'Hungary': 1
}

To simplify this task further, you can implement the ubiquitous map-reduce combina-
tion. Linking these functions, you can enhance the behavior of map and reduce by
providing specialized behaviors as parameters. At a high level, this program’s flow has
the structure

_(persons).map(func1).reduce(func2);

where func1 and func2 implement the particular behavior you want. Separating the
functions from the main flow, you get the code in the next listing.

const getCountry = person => person.address.country;

const gatherStats = function (stat, criteria) {
 stat[criteria] = _.isUndefined(stat[criteria]) ? 1 :

Listing 3.3 Computing country counts

Listing 3.4 Combining map and reduce to compute statistics

Extracts a
person’s country

Creates a country entry
that’s initialized to 1
and incremented with
every person living in
that country

Returns the
accumulated
object

Starts the reduce
process with an empty
object (initializes the
accumulator)

67Function chaining
stat[criteria] + 1;
 return stat;
};

_(persons).map(getCountry).reduce(gatherStats, {});

Listing 3.4 uses map to preprocess the array of objects and extract all countries; then it
uses reduce to collect the final result. This produces the same output as listing 3.3, but
in a much cleaner and extensible way. Instead of direct property access, consider pro-
viding a lens (using Ramda) that focuses on the person’s address.city property:

const cityPath = ['address','city'];
const cityLens = R.lens(R.path(cityPath), R.assocPath(cityPath));

And just as easily, you can compute counts based on the cities people reside in:

_(persons).map(R.view(cityLens)).reduce(gatherStats, {});

Alternatively, you can use _.groupBy to accomplish a similar outcome in an even more
succinct way:

_.groupBy(persons, R.view(cityLens));

Unlike map, because reduce relies on an accumulated result, it can behave differ-
ently when applied left-to-right or right-to-left if not provided with a commutative
operation. To illustrate this, consider a simple program that sums up the numbers
in an array:

([0,1,3,4,5]).reduce(.add); //-> 13

The same result can be obtained by reducing in reverse with _.reduceRight. This
works as expected because addition is a commutative operation, but it can produce
significantly different results for operations that aren’t, like division. Using the same
notation as before, _.reduceRight can be viewed as follows:

reduceRight(f, [e0, e1, e2],accum) -> f(e0, f(e1, f(e2, f(e3,accum)))) -> R

For instance, these two programs using _.divide will compute completely different
values:

([1,3,4,5]).reduce(_.divide) !== ([1,3,4,5]).reduceRight(_.divide);

Furthermore, reduce is an apply-to-all operation, which means there’s no way for it to
be short-circuited so it doesn’t run through the entire array. Suppose you need to vali-
date a list of input values. You could think of validating an array of parameters as
reducing it to a single Boolean value, indicating whether all parameters are valid.

68 CHAPTER 3 Few data structures, many operations

hen
l

Using reduce, however, would be a bit inefficient because you’d have to visit all values
in the list. Once you’ve found an invalid input, there’s no point continuing to check
all of them. Let’s look at a more efficient validation function that uses _.some and
other functions you’ll come to know and love: _.isUndefined and _.isNull. When
applied against each element in the list, _.some returns as soon as it finds a passing
(true) value:

const isNotValid = val => _.isUndefined(val) || _.isNull(val);

const notAllValid = args => (_(args).some(isNotValid));

validate (['string', 0, null, undefined]) //-> false
validate (['string', 0, {}]) //-> true

You can also obtain the logical inverse of notAllValid (called allValid) using
_.every, which checks whether the given predicate returns true for all elements:

const isValid = val => !_.isUndefined(val) && !_.isNull(val);
const allValid = args => _(args).every(isValid);

allValid(['string', 0, null]); //-> false
allValid(['string', 0, {}]); //-> true

As you saw earlier, both map and reduce attempt to traverse the entire array. Often,
you aren’t interested in processing all elements in your data structure and would like
to skip any null or undefined objects. It would be nice if you had a mechanism to
remove or filter out certain elements from the list before the computation takes place.
Let’s visit _.filter next.

3.3.4 Removing unwanted elements with _.filter

When processing large collections of data, it’s often necessary to remove elements
that don’t form part of your computations. For instance, say you want to count only
people living in European countries, or people born in a certain year. Instead of clut-
tering your code with if-else statements, you can use _.filter.

 filter (also known as select) is a higher-order function that iterates through an
array of elements and returns a new array that’s a subset of the original with values for
which a predicate function p returns a result of true. In formal notation, this looks
like the following (also see figure 3.6):

filter(p, [d0, d1, d2, d3...dn]) -> [d0,d1,...dn] (subset of original input)

Value isn’t valid w
undefined or nul

Function some returns
as soon as it yields true.
This is useful when
checking that there’s at
least one valid value

69Function chaining
A possible implementation of filter is shown in the following listing.

function filter(arr, predicate) {
 let idx = -1,

len = arr.length,
result = [];

 while (++idx < len) {
let value = arr[idx];
if (predicate(value, idx, this)) {
result.push(value);

}
 }
 return result;
}

In addition to the array, filter accepts a predicate function used to test each mem-
ber of the array for inclusiveness. If the predicate yields true, the element is kept in
the result; otherwise, the element is skipped. This is why filter is commonly used to
remove invalid data from an array:

_(persons).filter(isValid).map(fullname);

But it can do much more than that. Suppose you need to extract only people born in
1903 from a collection of Person objects. Applying _.filter is much easier and
cleaner than using conditional statements:

const bornIn1903 = person => person.birthYear === 1903;

_(persons).filter(bornIn1903).map(fullname).join(' and ');

//-> 'Alonzo Church and Haskell Curry'

Listing 3.5 filter implementation

Predicate

Filter

Decides which elements to keep

Figure 3.6 The filter operation takes an array as input and applies a selection criteria
p that potentially yields a much smaller subset of the original array. The criteria p is also
known as a function predicate.

Resulting array contains
a subset of array values

Calls the predicate function. If
the result is true, the value is
kept; otherwise it’s skipped.

70 CHAPTER 3 Few data structures, many operations
Applying all of these techniques based on these extensible and powerful functions
allows you not only to write cleaner code but also to improve your understanding of
the data. Using the declarative style, you can focus on what the output of the appli-
cation will be instead of how to get there, facilitating deeper reasoning in your
application.

3.4 Reasoning about your code
Recall that, in JavaScript, thousands of lines of code that share a global namespace
can be loaded into a single page at once. Lately there’s lots of interest in creating
modules to compartmentalize business logic, but thousands of projects in production
still don’t do this.

 What does it mean to “reason about your code”? I’ve used this term loosely in pre-
vious chapters to refer to the ability to look into any part of a program and easily build
a mental model of what’s happening. This model includes dynamic parts like the state
of all variables and the outcomes of functions, as well as static parts such as the level of
readability and expressiveness of your design. Both are important. You’ll learn in this
book that immutability and pure functions make building this model much easier.

 Earlier, I highlighted the value of being able to link high-level operations together
to build programs. An imperative program flow is radically different from a functional
program flow. A functional flow gives you a clear picture as to the purpose of the pro-
gram without revealing any of its internal details, so that you can reason more deeply
about the code as well as how data flows into and out of the different stages to pro-
duce results.

Array comprehension
map and filter are higher-order functions that return new arrays from existing ones.
They exist in many functional programming languages like Haskell, Clojure, and others.
An alternative to combining map and filter is to use a concept called array compre-
hension, also known as list comprehension. It’s a functional feature that encapsu-
lates the functionality of map and filter into a concise syntax using the for...of
and if keywords, respectively:

[for (x of iterable) if (condition) x]

At the time of this writing, there’s a proposal in ECMAScript 7 to include array com-
prehensions. They’ll let you create concise expressions to assemble new arrays
(which is why the entire expression is wrapped in []). For example, you can refactor
the previous code in the following manner:

 [for (p of people) if (p.birthYear === 1903) p.fullname]
.join(' and ');

71Reasoning about your code
3.4.1 Declarative and lazy function chains

Recall from chapter 1 that functional programs are made up of simple functions
that in themselves don’t accomplish much but, when put together, can solve com-
plex tasks. In this section, you’ll learn a way to build entire an program by linking a
set of functions.

 Functional programming’s declarative model treats programs as the evaluation of
independent, pure functions, which support you in building the necessary abstrac-
tions to gain fluency and expressiveness in your code. Doing so, you can form an
ontology or vocabulary that clearly expresses the intent of your application. Building
pure functions on top of the building blocks of map, reduce, and filter leads to writ-
ing in a style that makes code easy to reason about and understand at a glance.

 The powerful effect of raising this level of abstraction is that you begin to think of
operations as agnostic to the underlying data structures used. Theoretically speaking,
whether you’re working with arrays, linked lists, binary trees, or otherwise, it shouldn’t
change the semantic meaning of your program. For this reason, functional program-
ming focuses on operations more than on the structure of the data.

 For example, suppose you’re tasked to read a list of names, normalize them,
remove any duplicates, and sort the final result. First, let’s write an imperative version
of this program; later you’ll refactor it into a functional style.

 You can express the list of names as an array with unevenly formatted input strings:

 var names = ['alonzo church', 'Haskell curry', 'stephen_kleene',
'John Von Neumann', 'stephen_kleene'];

The imperative program is shown next.

var result = [];
for (let i = 0; i < names.length; i++) {
 var n = names[i];
 if (n !== undefined && n !== null) {

var ns = n.replace(/_/, ' ').split(' ');
for(let j = 0; j < ns.length; j++) {

var p = ns[j];
p = p.charAt(0).toUpperCase() + p.slice(1);
ns[j] = p;

}
if (result.indexOf(ns.join(' ')) < 0) {

result.push(ns.join(' '));
}

 }
}
result.sort();

Listing 3.6 Performing sequential operations on arrays (imperative approach)

Loops through all
names in the array

Checks to make sure
all words are valid

The array contains
inconsistently formatted
data; this step normalizes
(fixes) each element.

Eliminates duplicates by
checking whether the name
exists in the resultSorts the array

72 CHAPTER 3 Few data structures, many operations
This code produces the desired output:

['Alonzo Church', 'Haskell Curry', 'Jon Von Neumann', 'Stephen Kleene']

The downside of imperative code is that it’s targeted at solving a particular problem
efficiently. The code in listing 3.6 can only be used to perform this particular task.
Therefore, it runs at a far lower level of abstraction than functional code. The lower
the level of abstraction, the lower the probability of reuse, and the greater the com-
plexity and likelihood of errors.

 On the other hand, the functional implementation merely connects black-box
components together and cedes the responsibility to these well-established and tested
APIs, as shown in the following listing. Notice how the cascade arrangement of func-
tion calls makes this code easier to read.

_.chain(names)
 .filter(isValid)
 .map(s => s.replace(/_/, ' '))
 .uniq()
 .map(_.startCase)
 .sort()
 .value();

//-> ['Alonzo Church', 'Haskell Curry', 'Jon Von Neumann', 'Stephen Kleene']

The _.filter and _.map functions take care of all the heavy lifting of iterating
through valid indexes in the names array. Your only job is to supply the specialized
behavior in the remaining steps. You use the _.uniq function to throw away duplicate
entries and _.startCase to capitalize each word; finally, you sort all the results.

 I’d much rather write and read programs that look like listing 3.7, wouldn’t you?
Not just because of the sheer reduction in the amount of code, but also due to its sim-
ple and clear structure.

 Let’s continue exploring Lodash. This example revisits listing 3.4, which computes
counts of all countries from an array of Person objects. For the purpose of this exam-
ple, augment the gatherStats function slightly:

const gatherStats = function (stat, country) {
 if(!isValid(stat[country])) {

stat[country] = {'name': country, 'count': 0};
 }
 stat[country].count++;
 return stat;
};

Listing 3.7 Performing sequential operations on arrays (functional approach)

Initializes a function chain
(discussed shortly) Removes

invalid values

Normalizes
valuesThrows away

duplicatesSets
case

73Reasoning about your code
It now returns an object with the following structure:

{
 'US' : {'name': 'US', count: 2},
 'Greece' : {'name': 'Greece', count: 1},
 'Hungary': {'name': 'Hungary', count: 1}
}

Using this structure guarantees unique entries for each country. Just for fun, let’s
inject a few more data points into the Person array you began the chapter with:

const p5 = new Person('David', 'Hilbert', '555-55-5555');
p5.address = new Address('Germany');
p5.birthYear = 1903;

const p6 = new Person('Alan', 'Turing', '666-66-6666');
p6.address = new Address('England');
p6.birthYear = 1912;

const p7 = new Person('Stephen', 'Kleene', '777-77-7777');
p7.address = new Address('US');
p7.birthYear = 1909;

The next task is to build a program that returns the country with the largest number
of people in this dataset. Let’s do this again by linking a function with the help of
_.chain() and a few other artifacts.

 _.chain(persons)
.filter(isValid)
.map(_.property('address.country'))
.reduce(gatherStats, {})
.values()
.sortBy('count')
.reverse()
.first()
.value()
.name; //-> 'US'

The _.chain function can be used to augment the state of an input object by connect-
ing operations that transform the input into the desired output. It’s powerful because,
unlike wrapping arrays with the shorthand _(...) object, it explicitly makes any func-
tion in the sequence chainable. Despite this being a complex program, you can avoid
creating any variables, and all looping is effectively eliminated.

 Another benefit of using _.chain is that you can create complex programs that
behave lazily, so nothing executes until that last value() function is called. This can
have a tremendous impact in your application because you can potentially skip running

Listing 3.8 Demonstrating lazy function chains with Lodash

Creates a lazy function chain
to process the provided array

Uses _.property to extract the
person object’s address.country
property. This is Lodash’s
equivalent but less feature-rich
version of Ramda’s R.view().

Executes all functions
in the chain

74 CHAPTER 3 Few data structures, many operations
entire functions when their results aren’t needed (lazy evaluation will be discussed in
chapter 7). This program’s control flow is depicted in figure 3.7.

 You’re beginning to see why functional programs are superior. The imperative
version of this task, I’ll leave to your imagination. The reason listing 3.8 works so
smoothly relates to the fundamental principles underlying FP—pure and side effect–
free functions. Each function in the chain immutably operates on new arrays built
from functions that precede it. By starting with a call to _.chain(), Lodash capitalizes
on this pattern to provide a Swiss Army knife of utilities to satisfy most needs. This
helps you transition into a style of programming called point-free; it’s unique to func-
tional programming, and I’ll introduce it in the next chapter.

 Being able to lazily define program pipelines has many more benefits than just
readability. Because lazy programs are defined before they’re evaluated, they can be
optimized using techniques such as data-structure reuse and method fusion. These
optimizations don’t reduce the time it takes to execute functions per se; rather, they
help to eliminate unnecessary invocations. I’ll discuss this in more detail in chapter 7
when we study the performance of functional programs.

 In listing 3.8, data is flowing from one node to the next in the network. Using
higher-order functions declaratively makes it obvious how data transforms in each
node, revealing more insights about your data.

map(f) reduce(g) values sortBy

The data flows and transforms
with each operation.

reverse first value name

p1 p2 p7p3 p4 p5 p6

_.chain()

The array is input into the method chain.

Starts the execution
of all steps

'US'

Gets country name

Figure 3.7 Control of a program built using Lodash function chains. The array of person objects is
processed through a series of operations. Along the way, the data flows and is finally transformed
into a single value.

75Reasoning about your code
3.4.2 SQL-like data: functions as data

Throughout this chapter, you’ve been exposed to an assortment of functions such as
map, reduce, filter, groupBy, sortBy, uniq, and so on. The vocabulary formed around
these functions can be used to clearly extrapolate information pertaining to your data.
If you think outside the box for a second, you’ll notice that these functions resemble
SQL, which isn’t accidental.

 Developers are accustomed to using SQL and its features to understand and
extrapolate meaning from data. For example, you can represent the collection’s per-
son objects as shown in table 3.1.

As it turns out, thinking in terms of a query language when building programs is simi-
lar to the operations applied to arrays in functional programming, which make use of
a common vocabulary or algebra, if you will, to encourage a deeper reasoning about
the nature of your data and how it’s structured. The following SQL query

SELECT p.firstname, p.birthYear FROM Person p
WHERE p.birthYear > 1903 and p.country IS NOT 'US'
GROUP BY p.firstname, p.birthYear

makes it crystal clear what you should expect your data to look like after running this
code. Before you implement the JavaScript version of this program, let’s implement a
few function aliases to help me make this point. Lodash supports a feature called mix-
ins that can be used to extend the core library with additional functions and have
them chained the same way:

_.mixin({'select': _.pluck,
'from': _.chain,
'where': _.filter,
'groupBy': _.sortByOrder});

Table 3.1 Representing the data in the person list as a table

id firstname lastname country birthYear

0 Haskell Curry US 1900

1 Barkley Rosser Greece 1907

2 John Von Neumann Hungary 1903

3 Alonzo Church US 1903

4 David Hilbert Germany 1862

5 Alan Turing England 1912

6 Stephen Kleene US 1909

76 CHAPTER 3 Few data structures, many operations
After applying this mixin object, you can write the following program.

_.from(persons)
 .where(p => p.birthYear > 1900 && p.address.country !== 'US')
 .groupBy(['firstname', 'birthYear'])
 .select('firstname', 'birthYear')
 .value();

//-> ['Alan', 'Barkley', 'John']

Listing 3.9 creates aliases that map native SQL keywords to corresponding functions,
so you may experience a closer realization of functional code to a query language.

You should be convinced by now that functional programming can behave as a power-
ful abstraction over imperative code. What better way of processing and parsing your
data than to use query language semantics? Like SQL, this JavaScript code models the
data in the form of functions, also known as functions as data. Because it’s declarative,
it describes what the data output is and not how it came to be. So far, I haven’t needed
any conventional looping statements in this chapter—and I don’t intend to use them
for the rest of the book. Instead, high-level abstractions replace looping.

 Another technique commonly used to replace loops is recursion, which you can
use to abstract iteration when tackling problems that are “self-similar” in nature. For
these types of problems, sequential function chains are inefficient and inadequate.
Recursion, on the other hand, implements its own ways of processing data by yielding
the heavy lifting of standard looping to the language runtime.

Listing 3.9 Writing SQL-like JavaScript

JavaScript mixins
A mixin is an object that defines an abstract subset of functions relating to a partic-
ular type (in this case, a SQL command). This object isn’t concretely used in code,
other than to extend the behavior of another object (it’s somewhat similar to a trait
in other programming languages). The target object borrows all of functionality from
the mixin.

In the object-oriented world, it’s also another way to reuse code without having to use
inheritance or to simulate multiple inheritance in languages that don’t support it
(JavaScript being one of them). I won’t cover mixins in this book, but they can be pow-
erful when used correctly. If you want to learn more about mixins, I suggest reading
https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-
mixins/.

https://javascriptweblog.wordpress.com/2011/05/31/a-fresh-look-at-javascript-mixins/

77Learning to think recursively
3.5 Learning to think recursively
Sometimes a problem is difficult and complex to tackle head on. When this occurs,
you should immediately look for ways to decompose it. If the problem can be broken
down into smaller versions of itself, you may be able to solve the smaller version and
build it up to solve the entire problem. Recursion is essential for array traversal in
pure functional programming languages like Haskell, Scheme, and Erlang because
they don’t have looping constructs.

 In JavaScript, recursion has many applications, such as parsing XML or HTML doc-
uments, graphs, and so on. In this section, I’ll explain what recursion is and then work
through an exercise that will teach you how think recursively. Then we’ll take a quick
look at a few data structures you can parse through using recursion.

3.5.1 What is recursion?

Recursion is a technique designed to solve problems by decomposing them into smaller,
self-similar problems that, when combined, arrive at the original solution. A recursive
function has two main parts:

■ Base cases (also known as the terminating condition)
■ Recursive cases

The base cases are a set of inputs for which a recursive function computes a concrete
result, without having to recur. The recursive case deals with a set of inputs (necessar-
ily smaller than the original) for which the function calls itself. If the input isn’t
smaller, the recursion runs indefinitely until the program crashes. As the function
recurs, the nature of the inputs unconditionally become smaller, finally reaching the
instance for which the base case is triggered and the process terminates with a value.

 Recall from chapter 2 that we used recursion to deep-freeze an entire nested
object structure. The base case triggered when the object encountered was a primitive
or had already been frozen; otherwise, the recursive step continued traversing the
object structure as it found more unfrozen objects. Recursion was appropriate for this
because at each level, the task to solve was exactly the same. Thinking recursively,
though, can be a challenge, so let’s begin there.

3.5.2 Learning to think recursively

Recursion isn’t a simple concept to grasp. As with functional programming, the hard-
est part is unlearning conventional ways. The focus of this book is not to make you a
master of recursion, and it’s not a technique you’ll use often; but it’s important, and
I’d like to exercise your brain and help you learn to analyze recursive problems better.

 Recursive thinking takes itself or a modified version of itself into consideration. A
recursive object is self-defining; for instance, think of the composition of branches in
a tree. A branch has leaves as well as other branches, which in turn have more leaves
and more branches. This process continues indefinitely and is halted only by a limit-
ing external factor—the size of the tree, in this case.

78 CHAPTER 3 Few data structures, many operations
 With that in mind, let’s do a warm-up exercise by tackling a simple problem: add-
ing all the numbers in an array. We’ll go from an imperative implementation to the
most functional. The imperative side of your brain naturally visualizes a solution
involving iterating through the array and keeping an accumulated value:

var acc = 0;
for(let i = 0; i < nums.length; i++) {
 acc += nums[i];
}

Your brain pushes you to consider the need for an accumulator, which is absolutely
necessary when you’re keeping a running total. But do you need to use a manual
loop? At this point you’re well aware that you have more weapons at your disposal in
your functional arsenal (_.reduce):

_(nums).reduce((acc, current) => acc + current, 0);

Pushing manual iteration into the framework abstracts your application code from it.
But you can do even better by ceding iteration entirely to the platform. The function
_.reduce shows that you don’t have to be concerned about looping or even the size of
the list. You can compute the result by subsequently adding the first element to the
rest and, thus, achieve recursive thinking. This thought process can be extended to
picture summation as performing a sequence of operations in the following manner,
which is known as lateral thinking:

sum[1,2,3,4,5,6,7,8,9] = 1 + sum[2,3,4,5,6,7,8,9]
= 1 + 2 + sum[3,4,5,6,7,8,9]
= 1 + 2 + 3 + sum[4,5,6,7,8,9]

Recursion and iteration are two sides of the same coin. In the absence of mutation,
recursion offers a more expressive, powerful, and excellent alternative to iteration. In
fact, pure functional languages don’t even have standard looping constructs like do,
for, and while, since all looping is done recursively. Recursion also leads to code
that’s easier to understand because it’s premised on repeating the same actions multi-
ple times on smaller input. The recursive solution in the following listing uses the
Lodash _.first and _.rest functions to access the first element of the array or all but
the first, respectively.

function sum(arr) {
 if(_.isEmpty(arr)) {

return 0;
 }
 return _.first(arr) + sum(_.rest(arr));
}
sum([]); //-> 0
sum([1,2,3,4,5,6,7,8,9]); //->45

Listing 3.10 Performing recursive addition

Base case (terminating
condition)

Iterative case: calls itself
on a smaller input using
_.first and _.rest

79Learning to think recursively
Adding the empty array triggers the base case, naturally returning zero. Otherwise, for
non-empty arrays, you proceed to recursively extract and sum the first elements
together with the rest of the array. Behind the scenes, recursive calls are stacked on
top of each other. As soon as the algorithm reaches the terminating condition, all the
return statements are executed as the runtime unwinds the stack to let the addition
take place. This is the mechanism by which recursion cedes looping to the language
runtime. Here’s a step-by-step view of the sum algorithm you just implemented:

1 + sum[2,3,4,5,6,7,8,9]
1 + 2 + sum[3,4,5,6,7,8,9]
1 + 2 + 3 + sum[4,5,6,7,8,9]
1 + 2 + 3 + 4 + sum[5,6,7,8,9]
1 + 2 + 3 + 4 + 5 + sum[6,7,8,9]
1 + 2 + 3 + 4 + 5 + 6 + sum[7,8,9]
1 + 2 + 3 + 4 + 5 + 6 + 7 + sum[8,9]
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + sum[9]
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + sum[]
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 0 -> halts, stack unwinds
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
1 + 2 + 3 + 4 + 5 + 6 + 7 + 17
1 + 2 + 3 + 4 + 5 + 6 + 24
1 + 2 + 3 + 4 + 5 + 30
1 + 2 + 3 + 4 + 35
1 + 2 + 3 + 39
1 + 2 + 42
1 + 44
45

At this point, it’s natural to think about the performance of recursion versus manual
iteration. After all, compilers have become extremely smart at optimizing loops. ES6
JavaScript brings an optimization feature called tail-call optimization that can bring the
performance of these two features closer together. Consider this slightly different
implementation of sum:

function sum(arr, acc = 0) {
 if(_.isEmpty(arr)) {

return 0;
 }
 return sum(_.rest(arr), acc + _.first(arr));
}

This version places the recursive call as the last step in the function body, or in tail posi-
tion. We’ll explore the benefits of doing this further in chapter 7 when we look at func-
tional optimizations.

3.5.3 Recursively defined data structures

You’re probably wondering about the names passed in to the person objects we’ve
been using as sample data. Back in the 1900s, the mathematics community behind
functional programming (lambda calculus, category theory, and so on) was vibrant.

Recursive call in
tail position

80 CHAPTER 3 Few data structures, many operations
Much of the work published was based on joint ideas and theorems by leading univer-
sities under the tutelage of professors like Alonzo Church. In fact, many mathemati-
cians like Barkley Rosser, Alan Turing, and Stephen Kleene, among others, were
doctoral students of Church’s. They went on to have doctoral students of their own.
Figure 3.8 graphs this apprenticeship relationship (or a sliver of it).

Structures like this are common in software because they can be used to model XML
documents, file systems, taxonomies, categories, menu widgets, faceted navigation,
social graphs, and more. So learning how to process them is vital. Figure 3.8 shows a set
of nodes with connections that denote advisor-student affiliations. Up to now, you’ve
used functional techniques to parse flat data structures, like arrays. But these operations
won’t work on tree-like data. Because JavaScript doesn’t have a built-in tree object, you
create a simple data structure based on nodes. A node is an object that contains a value, a
reference to its parent, and an array of children. In figure 3.8, Rosser has Church as its
parent node and Mendelson and Sacks as children. If a node has no parent, as is the
case with Church, it’s considered the root. Here’s the definition of the Node type.

class Node {
constructor(val) {
this._val = val;
this._parent = null;
this._children = [];

}

isRoot() {
return isValid(this._parent);

}

get children() {
return this._children;

}

Listing 3.11 Node object

Church

Rosser

Mendelson Sacks

Turing Kleene

Gandy Nelson Constable

Figure 3.8 Influential mathematicians who contributed to the development of
functional programming. The connected lines from parent to child nodes in the
tree structure represent a “student of” relationship.

This function was
created before.

81Learning to think recursively
hasChildren() {
return this._children.length > 0;

}

get value() {
return this._val;

}

set value(val) {
this._val = val;

}

append(child) {
child._parent = this;

this._children.push(child);
return this;

}

toString() {
return `Node (val: ${this._val}, children:

${this._children.length})`;
}

}

You can create new nodes like this:

const church = new Node(new Person('Alonzo', 'Church', '111-11-1111'));//

Trees are recursively defined data structures that contain a root node:

class Tree {
 constructor(root) {

this._root = root;
 }

 static map(node, fn, tree = null) {
node.value = fn(node.value);
if(tree === null) {

tree = new Tree(node);
}

if(node.hasChildren()) {
_.map(node.children, function (child) {

Tree.map(child, fn, tree);
});

}
return tree;

 }

Sets this
node’s parent

Adds this child
node to the list
of children

Returns this same
node (convenient for
method cascading)

Repeat this for every
node in the tree.

Uses a static method to avoid confusion with
the more popular Array.prototype.map. A
static method can also be used effectively
as a standalone function.

Invokes the iterator function
and updates the value of the
node element in the tree

Similar to Array.prototype.map;
the result is a new structure.

If the node has no children, no
need to continue (base case).

Invokes the provided
function against
each child nodeRecursive call

on each child
node

82 CHAPTER 3 Few data structures, many operations
get root() {
return this._root;

}
 }

The node’s main logic lies in the append method. Appending a child to a node sets
the child’s parent reference to it and adds the input node to the list of children. You
populate the tree by linking nodes to other child nodes in the following manner, start-
ing with the root, church:

church.append(rosser).append(turing).append(kleene);
kleene.append(nelson).append(constable);
rosser.append(mendelson).append(sacks);
turing.append(gandy);

Each node is in charge of wrapping a person object. The recursive algorithm per-
forms a preorder traversal of the entire tree, beginning at the root and descending to
all of its children. Due to its self-similar nature, traversing the tree from the root node
is exactly like traversing it from any node: a recursive definition. For this, you use
Tree.map, a higher-order function with semantics similar to Array.prototype.map,
which accepts a function that’s evaluated against each node value. As you can see,
regardless of the data structure used to model this data (a tree, in this case), the
semantics of this function should remain the same. Essentially, any data type can be
mapped over by preserving its structure. I’ll consider this notion of mapping structure
preserving functions to types more formally in chapter 5.

 A preorder traversal of this tree has the following steps, starting with root:

1 Display the data part of the root element
2 Traverse the left subtree by recursively calling the preorder function
3 Traverse the right subtree the same way

Figure 3.9 illustrates the path the algorithm takes.

Church

Rosser

Mendelson Sacks

Turing Kleene

Gandy Nelson Constable

1

2

3

4

5

6

7

8

Figure 3.9 Recursive preorder traversal, starting with the root and descending
all the way to the left before going to the right

83Summary
The function Tree.map has two required inputs: the root node (which is basically the
start of the tree) and the iterator function that transforms each node’s value:

Tree.map(church, p => p.fullname);

This traverses the tree in preorder and applies the given function to each node, pro-
ducing the following:

'Alonzo Church', 'Barkley Rosser', 'Elliot Mendelson', 'Gerald Sacks', 'Alan
Turing', 'Robin Gandy', 'Stephen Kleene', 'Nels Nelson', 'Robert Constable'

This idea of encapsulating data to control how it’s accessed is key to functional pro-
gramming when working with immutability and side effect–free data types. I’ll expand
on this idea further in chapter 5. Parsing data structures is one of the most fundamen-
tal aspects of software and the bread and butter of functional programming. This
chapter took a deeper dive into the functional style of development using JavaScript’s
functional capabilities encoded in an extensible functional library called Lodash. This
style favors a streamlined and flow-based model where high-level operations can be
chained together as a sequence of steps, which contain the business logic needed to
arrive at your result.

 It’s undeniable that writing flow-based code also benefits reusability and modu-
larization, but I’ve only scratched the surface. I’ll take this idea of flow-based pro-
gramming to the next level in chapter 4, where I’ll focus on constructing real
function pipelines.

3.6 Summary
■ You can write extensible code with the higher-order functions map, reduce,

and filter.
■ Lodash is a vehicle for data processing, creating programs via control chains

where data flows and transformations are clearly demarcated.
■ Functional programming’s declarative style creates code that’s easier to rea-

son about.
■ Mapping high-level abstractions to a SQL vocabulary reveals a deeper under-

standing of your data.
■ Recursion solves self-similar problems and is required to parse through recur-

sively defined data structures.

Toward modular,
reusable code
A complex system that works is invariably found to have evolved from a
simple system that worked.

—John Gall, The Systems Bible (General Systemantics Press, 2012)

Modularity is one of the most important qualities of large software projects; it repre-
sents the degree to which programs can be separated into smaller, independent
parts. Modular programs posses the distinct quality that their meaning can be
derived from the meaning of their constituent parts. These parts (or subprograms)
become reusable components that can be incorporated as a whole or in pieces into

This chapter covers
■ Comparing function chains and pipelines
■ Introducing the Ramda.js functional library
■ Exploring the concepts of currying, partial

application, and function binding
■ Creating modular programs with functional

composition
■ Enhancing your program’s flow with function

combinators
84

85Method chains vs. function pipelines
other systems. This makes your code more maintainable and readable while making you
more productive. As a simple use case, think of how Unix shell programs are written:

tr 'A-Z' 'a-z' <words.in | uniq | sort

Even if you have no experience with Unix programming, you can clearly see that this
code involves a sequence of steps that transforms words from uppercase to lowercase,
removes duplicates, and sorts the remainder. The pipe operator (| in this case) con-
nects these commands. It’s remarkable that by having clear contracts describing the
inputs and outputs, small programs can be glued together to solve complex tasks. If
you imagine having to write this program in traditional imperative JavaScript, a few
loops, string comparisons, and perhaps a few conditional statements and global vari-
ables keeping track of everything come to mind. This probably isn’t very modular, per
se. In programming, we like to solve problems by breaking them into smaller pieces
and reconstructing those pieces to form a solution.

 In chapter 3, we used high-level functions to solve similar types of issues using tightly
coupled method chains that cascade over a single wrapper object. In this chapter, we’ll
extend this idea further to create loosely coupled pipelines via functional composition,
which will allow you to build whole programs from independent components with more
flexibility. These components can be as small as functions or as big as entire modules
that separately don’t provide much value but together give meaning to the whole.

 Creating modular code isn’t an easy task. We’ll look at important functional tech-
niques like partial evaluation and composition, with the aid of a functional framework
called Ramda.js, to bring code to the right level of abstraction in order to express solu-
tions in a point-free manner via declarative function pipelines.

4.1 Method chains vs. function pipelines
Chapter 3 left off with method chains used to connect a series of functions together,
revealing a style of functional programming much different from any other develop-
ment style. But there’s another approach for connecting functions, called pipelining.

 When studying functions, it’s useful to describe them in terms of their inputs and
outputs. The notation used in Haskell, for example, is popular in the functional com-
munity, and you’ll see it used in many places (see figure 4.1).

<function-name> :: <Inputs*> -> <Output>

Function
name

Zero or more
input types.

Operator that
stands for “has type.”

Single output
type

Figure 4.1 Haskell notation for defining a function. This notation describes
the function name, followed by an operator that sets the types of the
function’s inputs and outputs.

86 CHAPTER 4 Toward modular, reusable code
Remember that, in functional programming, a function is a mathematical mapping
between inputs and output types, as shown in figure 4.2. For instance, a simple func-
tion like isEmpty that takes a string and returns a Boolean can be expressed in this
notation as

isEmpty :: String -> Boolean

This function is a referentially transparent mapping between the set of all input values
of type String and the set of all Boolean values. Here’s the JavaScript lambda form
together with its function signature:

// isEmpty :: String -> Boolean
const isEmpty = s => !s || !s.trim();

Viewing functions as mappings of types is necessary to understand how they can be
chained and pipelined:

■ Chaining methods together (tightly coupled, limited expressiveness)
■ Arranging function pipelines (loosely coupled, flexible)

4.1.1 Chaining methods together

Recall from chapter 3 that the map and filter functions take an array as input and
return a new one. These functions can be chained together tightly via the implicit
Lodash wrapper object, which manages the creation of new data structures behind the
scenes. Here’s an example from chapter 3:

_.chain(names)
 .filter(isValid)
 .map(s => s.replace(/_/, ' '))
 .uniq()
 .map(_.startCase)
 .sort()
 .value();

S

S

S

B

B

isEmpty()

Input: Strings Output: Boolean

Figure 4.2 The function isEmpty
is a referentially transparent map
between the set of all string values
and the set of all Boolean values.

After each “dot,” you can only
invoke other methods from
the Lodash managed chain.

87Method chains vs. function pipelines
This is clearly a syntactical improvement over imperative code and drastically improves
its readability. Unfortunately, it’s contrived and tightly coupled to the owning object
that confines the number of methods you can apply in the chain, which limits expres-
siveness of the code. In this case, you’re obliged to use only the set of operations pro-
vided by Lodash, and you wouldn’t be able to easily connect functions from different
libraries (or your own) into one program.

NOTE There are ways to extend an object with additional functionality using
mixins, but you’re still responsible for managing the mixin object yourself. I
don’t cover mixins in this book, but you can read about them in “A fresh look
at JavaScript Mixins” (Angus Croll, JavaScript, JavaScript …, May 30, 2011,
http://mng.bz/15Zj).

At a high level, you can visualize a simple sequence of array methods as shown in fig-
ure 4.3. It would be best to break the chain (so to speak) and have a lot more free-
dom to arrange a sequence of independent functions; you can achieve this with
function pipelines.

4.1.2 Arranging functions in a pipeline

Functional programming removes the limitations present in method chaining and
provides the flexibility to combine any set of functions, no matter where they come
from. A pipeline is a directional sequence of functions loosely arranged so that the out-
put of one is input into the next. Figure 4.4 illustrates this abstractly by connecting
functions that work with different types of objects.

Array _.map Array Array_.filter

Order of operations

_.reduce

To value

Figure 4.3 A chain of arrays is made up of methods invoked sequentially via the owning object. Internally, each
method returns a new array containing the result of each function call.

f g

Type A Type B Type Cf :: A -> B g :: B -> C

call Pipe Pipe Pipe
Input Output

Figure 4.4 A Function pipeline that starts with a function f and input of type A and generates an object of
type B, subsequently passed into g, which outputs an object of type C as the final result. Functions f and
g can belong to any library or can be your own functions.

http://mng.bz/15Zj

88 CHAPTER 4 Toward modular, reusable code
In this chapter, you’ll learn techniques that can arrange function calls into high-level,
succinct function pipelines, just like figure 4.4. If this diagram looks familiar, it’s
because this pattern is equivalent to the pipes and filters object-oriented design pattern
seen in many enterprise applications, which was inspired by functional programming
(the filters in this case became the individual functions).

 Comparing figures 4.3 and 4.4 reveals a key difference between the approaches:
chaining makes tight connections via an object’s methods, whereas a pipeline links
inputs and outputs of any functions—arriving at loosely coupled components. But for
this linkage to be possible, the connecting functions must be compatible in terms of
arity and type, which we’ll examine next.

4.2 Requirements for compatible functions
Object-oriented programs use pipelines sporadically, in specific scenarios (authentica-
tion/authorization is usually one of them); on the other hand, functional program-
ming relies on pipelines as the sole method of building programs. Depending on the
task at hand, there’s usually quite a gap between a problem definition and a proposed
solution; therefore, computations must be carried out in well-defined stages. These
stages are represented by functions that execute with the condition that their inputs
and outputs be compatible in two ways:

■ Type—The type returned by one function must match the argument type of a
receiving function.

■ Arity—A receiving function must declare at least one parameter in order to
handle the value returned from a preceding function call.

4.2.1 Type-compatible functions

When designing function pipelines, it’s important that there exists a level of compati-
bility between what functions return and what they accept. In terms of type, this isn’t
as big a concern in JavaScript as it is with statically typed languages, because JavaScript
is loosely typed. Hence, if an object behaves like a certain type in practice, it’s that
type. This is also known as duck typing: “If it walks like a duck and talks like a duck, it’s
a duck.”

NOTE Statically typed languages have the advantage of using type systems to
alert you about potential problems without having to run your code. Type sys-
tems are an important topic in functional programming but aren’t covered in
this book.

JavaScript’s dynamic dispatch mechanism attempts to find properties and methods in
your objects regardless of type information. Although this is extremely flexible, you
often need to know what types of values a function is expecting; having this clearly
defined (perhaps documented in code using the Haskell notation) makes your pro-
grams easier to understand.

89Requirements for compatible functions
 Formally speaking, two functions f and g are type-compatible if the output of f has
a type equivalent to the set of inputs of g. For example, here’s a simple program to
process a student’s Social Security number:

trim :: String -> String
normalize :: String -> String

At this point, you should be able to follow the correspondence between the input of
normalize and the output of trim so that you can invoke them in a simple, manual,
pipeline sequence, as shown in the following listing.

 // trim :: String -> String
 const trim = (str) => str.replace(/^\s*|\s*$/g, '');

 // normalize :: String -> String
 const normalize = (str) => str.replace(/\-/g, '');

 normalize(trim(' 444-44-4444 ')); //-> '444444444'

Types are certainly important but, in JavaScript, not as critical as being compatible
with the number of arguments a function accepts.

4.2.2 Functions and arity: the case for tuples

Arity can be defined as the number of arguments a function accepts; it’s also referred
to as the function’s length. We usually take arity for granted in other programming par-
adigms, but in functional programming, as a corollary to referential transparency, the
number of arguments a function declares is often directly proportional to its complex-
ity. For instance, a function that works on a single string is likely much simpler than
one taking three or four arguments:

// isValid :: String -> Boolean
function isValid(str) {

...
}

// makeAsyncHttp:: String, String, Array -> Boolean
function makeAsyncHttp (method, url, data) {
 ...
}

Pure functions that expect a single argument are the simplest to use because the
implication is that they serve a single purpose—a singular responsibility. Our goal is to
work with functions with as few arguments as possible, because they’re more flexible

Listing 4.1 Building a manual function pipeline with trim and normalize

Trims leading and
trailing whitespace

Removes any dashes
from the input string

Manually calls both functions
in a simple sequential
pipeline (you’ll see how to
automate this technique
later). Calls the function
purposely with leading
and trailing whitespace.

Easy to use

Harder to use, because
all arguments must be
computed first

90 CHAPTER 4 Toward modular, reusable code

s
d
and versatile than those that depend on multiple arguments. Unfortunately, unary
functions aren’t easy to come by. In real life, isValid can be embellished with an
error message that clearly describes what happened:

isValid :: String -> (Boolean, String)

isValid(' 444-444-44444'); //-> (false, 'Input is too long!')

But how can you return two different values? Functional languages have support for a
structure called a tuple. It’s a finite, ordered list of elements, usually grouping two or
three values at a time, and written (a, b, c). Based on this concept, you can use a
tuple as a return value from isValid that groups a status with a possible error mes-
sage, to be returned as a single entity and subsequently passed to another function if
need be. Let’s explore tuples in more detail.

 Tuples are immutable structures that pack together items of different types so that
they can be passed into other functions. There are other ways of returning ad hoc
data, such as object literals or arrays:

return {
 status : false, or return [false, 'Input is too long!'];
 message: 'Input is too long!'
};

But when it comes to transferring data between functions, tuples offer more advantages:

■ Immutable—Once created, you can’t change a tuple’s internal contents.
■ Avoid creating ad hoc types—Tuples can relate values that may have no relation-

ship at all to each other. So defining and instantiating new types solely for
grouping data together makes your model unnecessarily convoluted.

■ Avoid creating heterogeneous arrays—Working with arrays containing different
types of elements is hard because it leads to writing code filled with lots of
defensive type checks. Traditionally, arrays are meant to store objects of the
same type.

Moreover, tuples behave much like the value objects shown in chapter 2. One con-
crete use case is in the concept of a Status, a simple data type containing a status flag
and a message: (false, 'Some error occurred!'). Unlike other functional languages,
such as Scala, JavaScript has no native support for a Tuple data type. For instance,
given the following Scala tuple definition

var t = (30, 60, 90)

you can access each individual part like this:

var sumAnglesTriangle = t._1 + t._2 + t._3 = 180

Returns a structure
that holds the statu
of the validation an
possibly an error
message

91Requirements for compatible functions

R
p

a
t
t

E

But JavaScript provides all the tools out of the box required for you to implement your
own version of Tuple, as shown next.

const Tuple = function(/* types */) {

 const typeInfo = Array.prototype.slice.call(arguments, 0);

 const _T = function(/* values */) {

const values = Array.prototype.slice.call(arguments, 0);

if(values.some((val) =>
val === null || val === undefined)) {
throw new ReferenceError('Tuples may not have

any null values');
}

if(values.length !== typeInfo.length) {
throw new TypeError('Tuple arity does not

match its prototype');
}

values.map(function(val, index) {
this['_' + (index + 1)] = checkType(typeInfo[index])(val);
}, this);

Object.freeze(this);
 };

 _T.prototype.values = function() {
return Object.keys(this).map(function(k) {

return this[k];
}, this);

 };
 return _T;
};

The Tuple object in listing 4.2 is an immutable, fixed-length structure used to hold a
heterogeneous set of n typed values that can be used for inter-function communica-
tion. For instance, you can use it to build quick value objects, such as Status:

const Status = Tuple(Boolean, String);

Let’s finish the student SSN validation example to take advantage of tuples.

Listing 4.2 Typed Tuple data type

eads the
rovided

rgument
ypes the
uple will
contain

Declares an internal
type _T in charge
of making sure the
types match the
corresponding values

xtracts the
values to be

stored in
the tuple

Checks for non-null values.
Functional data types
shouldn’t permit null
values to permeate.

Checks that the tuple has
the correct arity with
respect to the number
of types defined

Checks that each value passed in matches the correct type in the
tuple definition using the checkType function (shown later). Every
tuple element will translate to a property of the tuple referred to
by ._n, where n is the index of the element (starting at 1).

Makes the tuple
instance immutable

Extracts all values from the
tuple as an array. You can
use this with ES6
assignment destructuring
to map tuple values into
variables.

92 CHAPTER 4 Toward modular, reusable code
// trim :: String -> String
const trim = (str) => str.replace(/^\s*|\s*$/g, '');

// normalize :: String -> String
const normalize = (str) => str.replace(/\-/g, '');

// isValid :: String -> Status
const isValid = function (str) {
 if(str.length === 0){

return new Status(false,
'Invald input. Expected non-empty value!');

 }
 else {

return new Status(true, 'Success!');
 }
}

isValid(normalize(strim('444-44-4444'))); //-> (true, 'Success!')

The occurrence of 2-tuples is so frequent in software that it’s worth making them first-
class objects. When combined with JavaScript ES6 support for destructured assignment,
you can map tuple values to variables in a clean manner. Using tuples, the following
code creates an object called StringPair.

const StringPair = Tuple(String, String);
const name = new StringPair('Barkley', 'Rosser');

[first, last] = name.values();
first; //-> 'Barkley'
last; //-> 'Rosser'

const fullname = new StringPair('J', 'Barkley', 'Rosser');

Tuples are one way to reduce a function’s arity, but there’s a better alternative for cases
in which tuples aren’t sufficient. Let’s spice things up a bit by introducing function curry-
ing, which not only abstracts arity but also encourages modularity and reusability.

4.3 Curried function evaluation
Passing a function’s return value as input to a unary function is straightforward, but
what if the target function expects more parameters? In order to understand currying
in JavaScript, first you must understand the difference between a curried and a regular
(non-curried) evaluation. In JavaScript, a regular or non-curried function call is per-
mitted to execute with missing arguments. In other words, if you define a function
f(a,b,c) and call it with just a, the evaluation proceeds, and the JavaScript runtime

Listing 4.3 Using tuples for the isValid function

Listing 4.4 StringPair type

Declares a Status type
that holds values for
status (Boolean) and
message (String)

Throws an arity
mismatch error

93Curried function evaluation
sets b and c to undefined, as shown in figure 4.5. This is unfortunate and most likely
the reason why currying isn’t a built-in feature of the language. As you can imagine,
not declaring any arguments and relying on the arguments object within functions
only exacerbates this issue.

On the other hand, a curried function is one where all arguments have been explicitly
defined so that, when called with a subset of the arguments, it returns a new function
that waits for the rest of the parameters to be supplied before running. Figure 4.6 rep-
resents this visually.

Currying is a technique that converts a multivariable function into a stepwise
sequence of unary functions by suspending or “procrastinating” its execution until all
arguments have been provided, which could happen later. Here’s the formal defini-
tion of a curry of three parameters:

curry(f) :: (a,b,c) -> f(a) -> f(b)-> f(c)

This formal notation suggests that curry is a mapping from functions to functions
that deconstructs the input (a,b,c) into separate single-argument invocations. In
pure functional programming languages, like Haskell, currying is a built-in feature
and automatically part of all function definitions. Because JavaScript doesn’t auto-
matically curry functions, you need to write some supporting code to enable this.
Before we go into auto-currying, let’s start with a simple scenario of manually curry-
ing two arguments.

Evaluating: Runs as:

f(a) f(a, undefined, undefined)

Figure 4.5 Calling a non-
curried function with missing
arguments causes the function
to eagerly evaluate missing
parameters and fill them with
undefined.

result

Evaluating: Returns:

f(a)

f(a, b)

f(a, b, c)

f(b, c)

f(c)
Figure 4.6 Evaluating a curried function f. The
function produces a concrete result only when all
arguments have been provided; otherwise, it
returns another function that waits for these
parameters to be passed in.

94 CHAPTER 4 Toward modular, reusable code
function curry2(fn) {
return function(firstArg) {

return function(secondArg) {
return fn(firstArg, secondArg);

};
};

}

As you can see, currying is another case of a lexical scope (a closure) where the
returned functions are nothing more than trivial nested function wrappers to capture
the arguments for later use. Here’s a simple example:

const name = curry2(function (last, first) {
 return new StringPair('Barkley', 'Rosser');
});

[first, last] = name('Curry')('Haskell').values();
first;//-> 'Curry'
last; //-> 'Haskell'

name('Curry'); //-> Function

Let’s take another look at curry2, implementing the checkType function used in the
Tuple type shown in listing 4.2. This example use functions from another functional
library called Ramda.js.

Once it’s installed, you can use the global variable R to access all of its functionality,
such as R.is:

// checkType :: Type -> Type -> Type | TypeError
const checkType = curry2(function(typeDef, actualType) {
 if(R.is(typeDef, actualType)) {

return actualType;
 }

Listing 4.5 Manual currying with two arguments

Another functional library?
Like Lodash, Ramda.js provides lots of useful functions to connect functional pro-
grams and also enables a pure functional style of coding. The reason for using it is
that its parameters are conveniently arranged to facilitate currying, partial applica-
tion, and composition, which I’ll cover later in this chapter. For more details about
setting up Ramda, see the appendix.

First invocation of curry2
captures the first argument

Second invocation captures
the second argument

Returns the result of
applying this function
with both arguments

When supplied both
arguments, evaluates the
function completely

When supplied only one argument,
returns another function rather
than evaluating with undefined

Uses R.is() to check
type information

95Curried function evaluation
 else {
throw new TypeError('Type mismatch.

Expected [' + typeDef + '] but found
[' + typeof actualType + ']');

 }
});

checkType(String)('Curry'); //-> String
checkType(Number)(3); //-> Number
checkType(Date)(new Date()); //-> Date
checkType(Object)({}); //-> Object
checkType(String)(42); //-> Throws TypeError

For simple tasks, curry2 is adequate; but as you start building more-complex function-
ality, you’ll need to handle any number of arguments automatically. Normally, I’d
show you the function internals, but curry is a particularly long and convoluted func-
tion to explain, so I’ll spare you the headache and move into a more useful discussion
(you can find curry and its flavors—curryRight, curryN, and so on—implemented in
both Lodash and Ramda).

 You can use R.curry to simulate the automatic currying mechanism in pure func-
tional languages that works on any number of arguments. You can imagine automatic
currying as artificially creating nested function scopes corresponding to the number
of arguments declared. This example curries fullname:

// fullname :: (String, String) -> String
const fullname = function (first, last) {
 ...
}

The multiple arguments are transformed into unary functions of this form:

// fullname :: String -> String -> String
const fullname =
 function (first) {

return function (last) {
...

 }
}

Now let’s jump into some of the practical applications of currying. In particular, it can
be used to implement popular design patterns:

■ Emulating function interfaces
■ Implementing reusable, modular function templates

4.3.1 Emulating function factories

In the object-oriented world, interfaces are abstract types used to define a contract that
classes must implement. If you create an interface with the function findStudent(ssn),

96 CHAPTER 4 Toward modular, reusable code
concrete implementers of this interface must implement this function. Consider the
following “short” Java example to illustrate this concept:

public interface StudentStore {
 Student findStudent(String ssn);
}

public class DbStudentStore implements StudentStore {
 public Student findStudent(String ssn) {

// ...
ResultSet rs = jdbcStmt.executeQuery(sql);
while(rs.next()){

String ssn = rs.getString("ssn");
String name = rs.getString("firstname") +

rs.getString("lastanme");
return new Student(ssn, name);

}
 }
}

public class CacheStudentStore implements StudentStore {
 public Student findStudent(String ssn) {

// ...
return cache.get(ssn);

 }
}

Sorry for the long-winded code snippet (Java is that verbose!). This code shows two
implementations of the same interface: one that reads students from a database and
the other that reads from a cache. But from the point of the view of the calling code, it
cares only about calling the method and not where the object came from. This is the
beauty of object-oriented design via the factory method pattern. Using a function factory,
you can obtain the proper implementation:

StudentStore store = getStudentStore();
store.findStudent("444-44-4444");

You have no reason to miss out in the functional programming world, and currying
is the solution. Translating the Java code into JavaScript, you can create a function
that looks up student objects in a data store as well as an array (these are the two
implementers):

// fetchStudentFromDb :: DB -> (String -> Student)
const fetchStudentFromDb = R.curry(function (db, ssn) {
 return find(db, ssn);
});

// fetchStudentFromArray :: Array -> (String -> Student)
const fetchStudentFromArray = R.curry(function (arr, ssn) {
 return arr[ssn];
});

Looks up in
an object DB

Looks up in
an array

97Curried function evaluation
Because the functions are curried, you can separate the function definition from eval-
uation with a generic factory method findStudent, whose implementation details
could have originated from either implementation:

const findStudent = useDb ? fetchStudentFromDb(db)
: fetchStudentFromArray(arr);

findStudent('444-44-4444');

Now, findStudent can be passed to other modules without the caller knowing the
concrete implementation (this will be important in chapter 6 for unit testing to mock
interaction with the object store). In matters of reuse, currying also allows you to cre-
ate a family of function templates.

4.3.2 Implementing reusable function templates

Suppose you need to configure different logging functions to handle different states
in your application, such as errors, warnings, debug, and so on. Function templates
define a family of related functions based on the number of arguments that are cur-
ried at the moment of creation. This example will use the popular library Log4js, a
logging framework for JavaScript that is far superior to the typical console.log. You
can find installation information in the appendix. Here’s the basic setup:

const logger = new Log4js.getLogger('StudentEvents');
logger.info('Student added successfully!');

But with Log4js, you can do much more. Suppose you need instead to display mes-
sages on the screen in a pop-up. You can configure an appender to do so:

logger.addAppender(new Log4js.JSAlertAppender());

You can also change the layout by configuring the layout provider so that it outputs
messages in JSON format instead of plain text:

appender.setLayout(new Log4js.JSONLayout());

There are many settings you can configure, and copying and pasting this code into
each file causes lots of duplication. Instead, let’s use currying to define a reusable
function template (a logger module, if you will), which will give you the utmost flexi-
bility and reuse.

const logger = function(appender, layout, name, level, message) {
 const appenders = {

'alert': new Log4js.JSAlertAppender(),
'console': new Log4js.BrowserConsoleAppender()

 };

Listing 4.6 Creating a logger function template

Defines a set of
canned appenders

98 CHAPTER 4 Toward modular, reusable code
 const layouts = {
'basic': new Log4js.BasicLayout(),
'json': new Log4js.JSONLayout(),
'xml' : new Log4js.XMLLayout()

 };
 const appender = appenders[appender];
 appender.setLayout(layouts[layout]);
 const logger = new Log4js.getLogger(name);
 logger.addAppender(appender);
 logger.log(level, message, null);
};

Now, by currying logger, you can centrally manage and reuse appropriate loggers for
each occasion:

const log = R.curry(logger)('alert', 'json', 'FJS');

log('ERROR', 'Error condition detected!!');

// -> this will popup an alert dialog with the requested message

If you’re implementing multiple error-handling statements into one function or file,
you also have the flexibility of partially setting all but the last parameter:

const logError = R.curry(logger)('console', 'basic', 'FJS', 'ERROR');
logError('Error code 404 detected!!');
logError('Error code 402 detected!!');

Behind the scenes, subsequent calls to curry are called on this function, finally yield-
ing a unary function. The fact that you’re able to create new functions from existing
ones and pass any number of parameters to them leads to easily building functions in
steps as arguments are defined.

 In addition to gaining lots of reusability in your code, as I mentioned, the principal
motivation behind currying is to convert multiargument functions into unary func-
tions. Alternatives to currying are partial function application and parameter binding,
which are moderately supported by the JavaScript language, to produce functions of
smaller arity that also work well when plugged into function pipelines.

4.4 Partial application and parameter binding
Partial application is an operation that initializes a subset of a nonvariadic function’s
parameters to fixed values, creating a function of smaller arity. In simpler terms, if you
have a function with five parameters, and you supply three of the arguments, you end
up with a function that expects the last two.

 Like currying, partial application can be used to directly reduce the length of a func-
tion, but in a slightly different manner. Because a curried function is, essentially, a par-
tially applied function, there tends to be confusion about the techniques. Their main

Defines a set of
canned layout
providers

Issues a logging statement
with all configuration
parameters applied

Evaluates all
but the last two
arguments

99Partial application and parameter binding

d

par

Func
to
fu
difference lies in the internal mechanism and control over parameter passing. I’ll
attempt to clarify:

■ Currying generates nested unary functions at each partial invocation. Inter-
nally, the final result is generated from the step-wise composition of these unary
functions. Also, variations of curry allow you to partially evaluate a number of
arguments; therefore, it gives you complete control over when and how evalua-
tion takes place.

■ Partial application binds (assigns) a function’s arguments to predefined values
and generates a new function of fewer arguments. The resulting function con-
tains the fixed parameters in its closure and is completely evaluated on the subse-
quent call.

Now that this is clear, let’s move on to examine a possible implementation of partial.

function partial() {
 let fn = this, boundArgs = Array.prototype.slice.call(arguments);
 let placeholder = <<partialPlaceholderObj>>;
 let bound = function() {

let position = 0, length = args.length;
let args = Array(length);
for (let i = 0; i < length; i++) {

args[i] = boundArgs[i] === placeholder
? arguments[position++] : boundArgs[i];

}

while (position < arguments.length) {
args.push(arguments[position++]);

}
return fn.apply(this, args);

 };
 return bound;
});

For this discussion of partial application and function binding, we’ll go back to using
Lodash, because it has slightly better support for function binding than Ramda. On
the surface, however, using _.partial has a similar feel to using R.curry, and both
support placeholder arguments with their respective placeholder objects. With the
same logger function shown earlier, you can partially apply certain parameters to cre-
ate more-specific behavior:

const consoleLog = _.partial(logger, 'console', 'json', 'FJS Partial');

Let’s use this function to reemphasize the difference between curry and partial.
After applying these three arguments, the resulting consoleLog function expects the

Listing 4.7 Implementation of partial

Implementations of partial in
libraries such as Lodash use
the underscore object as the
placeholder. Other ad hoc
implementations use undefine
to suggest this parameter
should be skipped.

Creates
a new

function
with all

ameters
partially
applied

The placeholder object
partialPlaceholderObj skips
defining a function’s parameter
for a later call, so you can pick
which parameters are bound
and which are supplied as part
of the call (examples shortly).

Uses
tion.apply()
 invoke this
nction with
the proper

context and
all bound

arguments

100 CHAPTER 4 Toward modular, reusable code
other two arguments when called (not in steps, but all at once). So, unlike currying,
calling consoleLog with just one argument won’t return a new function and will
instead evaluate with the last one set to undefined. But you can continue applying
partial arguments to consoleLog by using _.partial again:

const consoleInfoLog = _.partial(consoleLog, 'INFO');
consoleInfoLog('INFO logger configured with partial');

Currying is an automated way of using partial applications—this is its main difference
from partial. Another variation is function binding, which is also available natively in
JavaScript as Function.prototype.bind().1 It works a bit differently than partial does:

const log =_.bind(logger, undefined, 'console', 'json', 'FJS Binding');
log('WARN', 'FP is too awesome!');

What is this undefined second argument to _.bind? Bind lets you create bound func-
tions, which can execute within the context of an owning object (passing undefined
tells the runtime to bind this function to the global context). Let’s see some practical
uses of _.partial and _.bind that do the following:

■ Extend the core language
■ Bind delayed functions

4.4.1 Extending the core language

Partial application can be used to extend core data types like String and Number with
useful utilities than enhance the expressiveness of the language. Just be mindful that
extending the language this way may make your code less portable to platform
upgrades if new, conflicting methods are added to the language. Consider the follow-
ing examples:

// Take the first N characters
String.prototype.first = _.partial(String.prototype.substring, 0, _);

'Functional Programming'.first(3); // -> 'Fun'

// Convert any name into a Last, First format
String.prototype.asName =
 _.partial(String.prototype.replace, /(\w+)\s(\w+)/, '$2, $1');

'Alonzo Church'.asName(); //-> 'Church, Alonzo'

1 See “Function.prototype.bind(),” Mozilla Developer Network, http://mng.bz/MY75.

Using a placeholder, you can partially apply
substring starting at index zero and create

a function that expects an offset value.

Partially applies certain
parameters to create

specific behavior

http://mng.bz/MY75

101Partial application and parameter binding

c

// Converts a string into an array
String.prototype.explode =
 _.partial(String.prototype.match, /[\w]/gi);

'ABC'.explode(); //-> ['A', 'B', 'C']

// Parses a simple URL
String.prototype.parseUrl = _.partial(String.prototype.match,
/(http[s]?|ftp):\/\/([^:\/\s]+)\.([^:\/\s]{2,5})/);

'http://example.com'.parseUrl(); // -> ['http', 'example', 'com']

Before implementing your own function, make sure to feature-check it first so you can
stay on top of new language updates:

if(!String.prototype.explode) {
 String.prototype.explode = _.partial(String.prototype.match, /[\w]/gi);
}

There are cases where partial application doesn’t work, such as when you’re working
with delayed functions like setTimeout. For this, you need to use function binding.

4.4.2 Binding into delayed functions

Using function binding to set the context object is important when you’re working
with methods that expect a certain owning object to be present. For instance, func-
tions such as setTimeout and setInterval in the browser expect the this reference
to be set to global context, the window object; otherwise, they don’t work. Passing
undefined tells the runtime to do just this. For instance, setTimeout can be used to
create a simple scheduler object to run delayed tasks. Here’s an example of using both
_.bind and _.partial:

const Scheduler = (function () {
 const delayedFn = _.bind(setTimeout, undefined, _, _);

 return {
delay5: _.partial(delayedFn, _, 5000),
delay10: _.partial(delayedFn, _, 10000),
delay: _.partial(delayedFn, _, _)

 };
})();

Scheduler.delay5(function () {
 consoleLog('Executing After 5 seconds!')
});

Using Scheduler, you can invoke any piece of code wrapped in a function body with a
certain delay (this timer isn’t guaranteed by the runtime engine, but that’s a separate
issue). Because both bind and partial are functions returning other functions, you
can easily nest them. As you can see in the previous code, you build each delay operation

Partially applies
match with specifi
regex expressions
to transform a
string into an
array containing
specific data

102 CHAPTER 4 Toward modular, reusable code
from the composition of a bound function and a partially applied function. Function
binding isn’t as useful as partial application in functional programming, and it’s also a
bit trickier to use, because it involves once again setting the function context. I cover
it here in case you run into it when exploring this topic on your own.

 Both partial application and currying are useful. Currying is the most widely used
technique to create function wrappers that abstract a function’s behavior, either to
preset its arguments or to partially evaluate them. This is beneficial because pure
functions with fewer arguments are easier to work with than functions with many argu-
ments. Either approach facilitates supplying the proper arguments so that functions
don’t have to blatantly access objects outside of their scope, while reducing them to
unary functions. Isolating the logic of obtaining this necessary data makes functions
more reusable; and, more important, it simplifies their composition.

4.5 Composing function pipelines
In chapter 1, we talked about the importance of being able to split a problem into
smaller, simpler subproblems (or tasks) in order to put them back together to arrive at a
solution—like pieces in a puzzle. The intention of functional programs is to gain the
required structure that leads to composition, the backbone of functional programming.
By now you understand the concepts of purity and side effect–free functions that make
this such a powerful technique. Recall that a side effect–free function is one that doesn’t
depend on any external data; everything the function needs must be provided as argu-
ments. In order to properly use composition, your functions must be side effect–free.

 Furthermore, if a program is built from pure functions, the resulting program is
itself pure, allowing it to be composed further as a part of even more-complex solu-
tions without antagonizing other parts of the system. This topic is extremely impor-
tant to understand, because it will be the central theme of the book going forward. So
before we dive into functional composition, let’s take a moment to understand it with
a concrete example that composes widgets in an HTML page.

4.5.1 Understanding composition with HTML widgets

The idea of composition is intuitive and certainly not unique to functional program-
ming. Consider how HTML widgets are laid out on a page. Complex widgets are built
from the combination of simple ones, which in turn can form part of even bigger wid-
gets. For instance, combining three input text boxes with an empty container pro-
duces a simple student form, as shown in figure 4.7.

 The student form is a now a component (itself a widget) that can be composed
with others into a more complex component to create an entire student console form
(see figure 4.8). You get the idea; the student console widget could be plugged in to a
bigger dashboard if need be. In this case, we say the console is composed of (or made up
of) the address and bio forms. Objects with simple behavior (which don’t have external
dependencies) compose fairly well and can be used to build complex structures from
simple ones, like interlocking building blocks.

103Composing function pipelines
To demonstrate, let’s create a recursive tuple definition called Node:

const Node = Tuple(Object, Tuple);

This can be used to hold an object and a reference to another node (tuple). It turns
out this is the functional definition of a list of elements, made up recursively of a head
and a tail. Using a curried function called element

const element = R.curry(function(val, tuple) {
 return new Node(val, tuple);
});

you can create a null-terminated list of any type. Figure 4.9 shows a simple list of
numbers.

First name

Last name

Age

First name

Last name

Age

Bio Bio

+ =

Figure 4.7 Combining three simple input text widgets with a container widget to create a
bio form component

First name

Last name

Age

First name

Last name

Age

Student console

Bio

+ =

Bio

City

State

Country

+

Address

Street

Student console

City

State

Country

Address

Street

State

State

Figure 4.8 Student console widget built from smaller widgets including an address form, a bio form, a button,
and a container

var grades = element(1, element(2, element(3, element(4, null))));

Head Tail

Figure 4.9 Highlighting the head and tail sections forming a list of numbers. The head
and tail are readily available as functions for array processing in functional languages.

104 CHAPTER 4 Toward modular, reusable code
This is more or less how lists are constructed in languages like ML and Haskell. On the
other hand, complex objects with high degrees of coupling to other external objects
don’t have clear rules for composition and can be extremely hard to work with. Func-
tional composition can have a similar fate when side effects and mutations are pres-
ent. Now, let’s dive into the composition of functions.

4.5.2 Functional composition: separating description from evaluation

In essence, functional composition is a process used to group together complex behavior
that has been broken into simpler tasks. I defined it briefly in chapter 1, and now I’ll
explain it in detail. Let’s go over a quick example that uses Ramda’s R.compose to
combine two pure functions:

const str = `We can only see a short distance
ahead but we can see plenty there
that needs to be done`;

const explode = (str) => str.split(/\s+/);

const count = (arr) => arr.length;

const countWords = R.compose(count, explode);

countWords(str); //-> 19

Arguably, this code is easy to read, and its meaning easily derived by glancing at the
function’s constituent parts. The interesting quality of this program is that evaluation
never takes place until countWords is run; in other words, the functions passed by
name (explode and count) are dormant within the composition. The result of com-
position is another function that waits to be called with its respective argument: the
argument to countWords. This is the beauty of function composition: separating a func-
tion’s description from its evaluation.

 I’ll explain what happens behind the scenes. The call to countWords(str) runs
explode with the given sentence and passes its output (array of strings) into count,
which computes the length of the array. Composition connects outputs with inputs,
creating true function pipelines. Let’s examine a more formal definition. Consider
two functions f and g with their respective input and output types:

g :: A -> B
f :: B -> C

Figure 4.10 draws a set of arrows connecting all groups. This abstract example shows a
function (arrow) f that takes an argument of type B and returns a C. Another function
(arrow) g takes an A and returns a B. The composition of g :: A -> B and f :: B -> C,

Splits a sentence into
an array of words

Counts the
words

g is a function
from type A to B.

f is a function
from type B to C.

105Composing function pipelines
pronounced (“f composed of g”), results in another function (arrow) from A -> C, as
shown in figure 4.11. This can be expressed more formally as

f g = f(g) = compose :: (B -> C) -> (A -> B) -> (A -> C)

Recall that with referential transparency, functions are nothing more than arrows con-
necting one object of a group to another.

 This leads to another important software development principle, which is the
backbone of modular systems. Because composition loosely binds type-compatible
functions at their boundaries (inputs and outputs), it fairly satisfies the principle of
programming to interfaces. In the previous example, you have a function explode ::
String -> [String] composed with the function count :: [String] -> Number; in
other words, each function only knows or cares about the next function’s interface
and isn’t worried about its implementation. Although it isn’t part of the JavaScript lan-
guage, compose can be naturally expressed as a higher-order function.

function compose(/* fns */) {
 let args = arguments;
 let start = args.length - 1;
 return function() {

let i = start;
let result = args[start].apply(this, arguments);
while (i--)

result = args[i].call(this, result);
return result;

 };
}

Listing 4.8 Implementation of compose

A

A

A

B

B
C

Cg

f

Figure 4.10 Showing the set of
input and output types for functions f
and g. Function g maps A values to B
values, and function f maps B values
to C values. Composition happens
because f and g are compatible.

A

A

A

C

C
f composed of g

Figure 4.11 The composition of two functions is
a new function directly mapping the inputs of the
first function to the output of the second. The
composition is also a referentially transparent
mapping between inputs and outputs.

The output of compose is
another function that’s called
on actual arguments. Dynamically applies

the function on the
arguments passed in

Iteratively invokes the
subsequent functions
based on the previous
return value

106 CHAPTER 4 Toward modular, reusable code
Luckily, Ramda provides an implementation of R.compose that you can use so you
don’t have to implement this yourself. Let’s write a validation program that checks for
a valid SSN (you’ll reuse a lot of these helper functions throughout the book):

const trim = (str) => str.replace(/^\s*|\s*$/g, '');

const normalize = (str) => str.replace(/\-/g, '');

const validLength = (param, str) => str.length === param;

const checkLengthSsn = _.partial(validLength, 9);

From these functions, you can create others:

const cleanInput = R.compose(normalize, trim);
const isValidSsn = R.compose(checkLengthSsn, cleanInput);

cleanInput(' 444-44-4444 '); //-> '444444444'
isValidSsn(' 444-44-4444 '); //-> true

Taking this fundamental concept further, as you can see in figure 4.12, entire pro-
grams can be built with the combination of simple functions.

This concept isn’t limited to functions; entire programs can be built from the combi-
nation of other side effect–free, pure programs or modules. (Based on the earlier def-
inition of a function, used throughout this book, I’ll use the terms function, program,
and module loosely to refer to any executable unit with inputs and output.)

Removes any spaces
before and after the input

Removes all dashes

Checks the
length of a string

Configures the function
with parameter 9 to check
the length of an SSN (9)

Composes normalize
and trim results in the
cleanInput function

Composes cleanInput
further with
checkLengthSsn to
yield a new function

isValidSsn

checkLengthSsn

checkLength->9

cleanInput

normalizetrim

module1

module2

module4

module3

module6module5

Figure 4.12 Complex functions can be built by composing simple functions. Just as functions
combine, entire programs made from different modules (containing more functions) that can also
combine in this fashion.

107Composing function pipelines
 Composition is a conjunctive operation, which means it joins elements using a logical
AND operator. For instance, the function isValidSsn is made from checkLengthSsn
and cleanInput. In this manner, programs are derivations of the sum of all their parts.
In chapter 5, we’ll tackle problems that require disjunctive behavior to express condi-
tions where functions can return one of two results, A OR B.

 Alternatively, you can augment JavaScript’s Function prototype to add compose.
Here’s the exact same behavior in a style similar to function chaining from chapter 3:

Function.prototype.compose = R.compose;

const cleanInput = checkLengthSsn.compose(normalize).compose(trim);

If you like this better, feel free to use it. In the next chapter, you’ll learn that this mecha-
nism of chaining methods is prevalent in functional algebraic data types called monads.
Personally, I recommend sticking to the more functional form, because it’s much more
succinct and flexible and works better in conjunction with functional libraries.

4.5.3 Composition with functional libraries

One of the benefits of working with a functional library such as Ramda is that all func-
tions have been properly configured with currying in mind, making them versatile
when composed into function pipelines. Let’s look at another example. Here’s a list of
students with their respective grades in a class:

const students = ['Rosser', 'Turing', 'Kleene', 'Church'];
const grades = [80, 100, 90, 99];

Suppose you need to find the student with the highest grade in the class. You learned
in chapter 3 that working with collections of data is one of the cornerstones of func-
tional programming. The code in listing 4.9 is made up of the composition of several
curried functions, each in charge of transforming this data in a particular way:

■ R.zip—Creates a new array by pairing the contents of adjacent arrays. In this
case, pairing these two arrays yields [['Rosser', 80], ['Turing', 100], ...].

■ R.prop—Specifies the value to be used in sorting. In this case, passing a 1 points
to the second element of a subarray (grade).

■ R.sortBy—Performs a natural ascending sort of the array by the given property.
■ R.reverse—Reverses the entire array to get the highest number at the first

element.
■ R.pluck—Builds an array by extracting an element at a specified index. Passing

a 0 points to the student name element.
■ R.head—Takes the first element.

Functions are again
chained with dots.

108 CHAPTER 4 Toward modular, reusable code

il
,

const smartestStudent = R.compose(
R.head,
R.pluck(0),
R.reverse,
R.sortBy(R.prop(1)),
R.zip);

smartestStudent(students, grades); //-> 'Turing'

Using composition can be challenging, especially when you’re just getting acquainted
with the framework or you’re just beginning to understand the problem domain.
When I use composition in my own work, I often find myself thinking about where I
should begin. Again, the hardest part is the exercise of breaking a task into smaller
pieces; once this is finalized, composition is compelling for recombining functions.

 In addition, something you’ll soon realize and begin to love about functional com-
position is how you’re naturally drawn to expressing the entire solution succinctly in
one or two lines. Because you’re forced to create functions that map to the different
stages in your algorithm, you begin to build an ontology with which you can stitch
together expressions that describe parts of your solution, allowing team members to
more quickly understand your code. The following listing is similar to an exercise
from chapter 3.

const first = R.head;
const getName = R.pluck(0);
const reverse = R.reverse;
const sortByGrade = R.sortBy(R.prop(1));
const combine = R.zip;

R.compose(first, getName, reverse, sortByGrade, combine);

Although this instance of the program is easier to read, there’s no added reusability
because these functions are specific to the particular task at hand. Rather, I recom-
mend getting acquainted with the functional vocabulary of head, pluck, zip, and oth-
ers, so that, through practice, you gain comprehensive knowledge of your functional
framework of choice. It will make the transition to other frameworks or other func-
tional languages easier, because they all use many of the same naming conventions.
This will quickly pay dividends in your productivity.

 Listings 4.9 and 4.10 uses pure functions to express an entire solution, but you
know this isn’t always possible. As an application developer, you’ll face many situations
where you need to do things like read from local storage and make remote HTTP
requests, among other tasks, which unavoidably create side effects. For this, you must

Listing 4.9 Computing the smartest student

Listing 4.10 Using descriptive function aliases

Creates the function
smartestStudent,
defined as the
composition of a
series of Ramda
functions

Passing both arrays to the
function begins by calling
R.zip(). At each step the
data is immutably
transformed from one
expression to the next unt
the final result is obtained
extracted using R.head().

109Composing function pipelines
be able to isolate and separate the impure from the pure code; as you’ll see in chapter 6,
this will make testing extremely simple.

4.5.4 Coping with pure and impure code

Impure code causes externally observable side effects after it’s run and has external
dependencies to access data beyond the scope of its constituent functions. It only
takes one function to be impure for your entire program to follow suit.

 With that said, you don’t have to make your functions 100% pure to reap the ben-
efits of functional programming. Although this is the perfect scenario, you must also
learn to tolerate pure and impure behavior by creating a clear separation between the
two and isolating the impurity as much as possible—ideally, in single functions. Then
composition can be used to glue the pure and impure pieces back together. Recall
from chapter 1 that you began implementing the requirements for the showStudent
function, which looked like this:

const showStudent = compose(append, csv, findStudent);

One way or another, most of these functions emit side effects through the arguments
they receive:

■ findStudent uses a reference to a local object store or some external array.
■ append directly writes and modifies HTML elements.

Let’s continue improving this program by using curry to partially evaluate the invari-
able parameters of each function. You’ll also add code to sanitize the input parameter
and refactor the HTML operations with more fine-grained functions. Finally, you’ll
make the find operation more functional by dislodging it from the object store.

// findObject :: DB -> String -> Object
const findObject = R.curry(function (db, id) {
 const obj = find(db, id);
 if(obj === null) {

throw new Error('Object with ID [' + id + '] not found');
 }
 return obj;
});

// findStudent :: String -> Student
const findStudent = findObject(DB('students'));

const csv = (student) =>
 `${student.ssn}, ${student.firstname}, ${student.lastname}`;

// append :: String -> String -> String
const append = curry(function (elementId, info) {
 document.querySelector(elementId).innerHTML = info;
 return info;
});

Listing 4.11 showStudent program using currying and composition

Refactored find() method that
takes the storage object as a
parameter to allow for easier
composition

Partially evaluates fetchRecord
by pointing to the students
object store, creating a new
function called findStudent

110 CHAPTER 4 Toward modular, reusable code
// showStudent :: String -> Integer
const showStudent = R.compose(
 append('#student-info'),
 csv,
 findStudent,
 normalize,
 trim));

showStudent('44444-4444'); //-> 444-44-4444, Alonzo, Church

The code in listing 4.11 defines four functions that make up showStudent (I added
their type signatures so that you can more easily follow the correspondence between
each successive invocation). This program executes all the functions beginning with
trim and works backward until it calls append, linking the output of one function and
passing it to the next. But wait a second; remember the Unix program with which I
started the chapter? This program executes each function in a left-to-right manner
using the Unix built-in pipe | operator. Piping functions evaluates programs in the
opposite order of composition (see figure 4.13).

If the thought of composing functions in this naturally reversed flow feels odd to you,
or you visualize your programs as a left-associative sequence, you can use Ramda’s mir-
ror function to compose, called pipe, which achieves the same results:

R.pipe(
trim,
normalize,
findStudent,
csv,
append('#student-info'));

As evidence of how important this is, F# provides built-in support for this using its
pipe-forward operator |>. In JavaScript, we don’t have this luxury, but we can safely
rely on functional libraries to do the job effectively. Note from both R.pipe and
R.compose that you’re creating new functions without having to explicitly declare any
of their formal arguments, as you’d normally have to. Functional composition encour-
ages this writing style, which goes by the name of point-free coding.

Uses composition to put the
entire program together in
a single executable

tr 'A-Z' 'a-z' <words.in | uniq | sort

1 2 3

Figure 4.13 A simple Unix shell
program, piping together a sequence
of functions or programs

111Composing function pipelines
4.5.5 Introducing point-free programming

If you look closer at the function in listing 4.10, you can see that it doesn’t show the
parameters of any of its constituent functions, as would a traditional function declara-
tion. Here it is again:

R.compose(first, getName, reverse, sortByGrade, combine);

Using compose (or pipe) means never having to declare arguments (known as the
points of a function), making your code declarative and more succinct or point-free.

 Point-free programming brings functional JavaScript code closer to that of Haskell
and the Unix philosophy. It can be used to increase the level of abstraction by forcing
you to think of composing high-level components instead of worrying about the low-
level details of function evaluation. Currying plays an important role because it gives
you the flexibility to partially define all but the last argument of an inlined function
reference. This style of coding is also known as tacit programming, much like the Unix
program from the start of the chapter, which is written next in a point-free way.

const runProgram = R.pipe(
R.map(R.toLower),
R.uniq,
R.sortBy(R.identity));

runProgram(['Functional', 'Programming', 'Curry',
 'Memoization', 'Partial', 'Curry', 'Programming']);

//-> [curry, functional, memoization, partial, programming]

The program in listing 4.12 is made up of point-free function expressions that are
defined only by name (some with an argument partially defined), without declaring
what types of arguments they take or how they’re connected within the bigger expres-
sion. As composition morphs into this coding style, it’s important to keep in mind that
overdoing it can create obscure or obfuscated programs. Not everything has to be
point-free. In some cases, breaking out your function composition into two or three at
a time can go a long way.

 Point-free code can raise questions related to error handling and debugging. In
other words, because throwing exceptions causes side effects to occur, should you
resort to returning null from within composed functions? Checking for null within
functions is acceptable but adds a lot of duplicated, boilerplate code and assumes you
return sensible default values for the program to proceed. Also, how would you attempt
to debug all of these commands, which appear on a single line? These are valid con-
cerns and will be addressed in the next chapter, where I’ll present more point-free
programs that include automatic support for error handling.

Listing 4.12 Point-free version of a Unix program using Ramda functions

Uses the identity function, which returns the
argument it was called with. It has subtle but
practical applications (explained in the next section).

112 CHAPTER 4 Toward modular, reusable code
 Another obvious concern is how to handle situations where you need to use condi-
tional logic or have some way of running multiple functions in sequence. In the next
section, I’ll discuss helpful utilities to manage your application’s control flow.

4.6 Managing control flow with functional combinators
In chapter 3, I gave a comparison of a program’s control flow in both imperative and
functional paradigms and highlighted the significant differences between them.
Imperative code uses procedural control mechanisms like if-else and for to drive a
program’s flow, but functional programming doesn’t. As we leave the imperative
world behind, we need to find alternatives to fill in that gap; for this, we can use func-
tion combinators.

 Combinators are higher-order functions that can combine primitive artifacts like
other functions (or other combinators) and behave as control logic. Combinators typ-
ically don’t declare any variables of their own or contain any business logic; they’re
meant to orchestrate the flow of a functional program. In addition to compose and
pipe, there’s an infinite number of combinators, but we’ll look at some of the most
common ones:

■ identity

■ tap

■ alternation

■ sequence

■ fork (join)

4.6.1 Identity (I-combinator)

The identity combinator is a function that returns the same value it was provided as
an argument:

identity :: (a) -> a

It’s used extensively when examining the mathematical properties of functions, but it
has other practical applications as well:

■ Supplying data to higher-order functions that expect it when evaluating a func-
tion argument, as you did earlier when writing point-free code (listing 4.12).

■ Unit testing the flow of function combinators where you need a simple function
result on which to make assertions (you’ll see this in chapter 6). For instance,
you could write a unit test for compose that uses identity functions.

■ Extracting data functionally from encapsulated types (more on this in the
next chapter).

113Managing control flow with functional combinators
4.6.2 Tap (K-combinator)

tap is extremely useful to bridge void functions (such as logging or writing a file or
an HTML page) into your composition without having to any create additional code.
It does this by passing itself into a function and returning itself. Here’s the function
signature:

tap :: (a -> *) -> a -> a

This function takes an input object a and a function that performs some action on a.
It runs the given function with the supplied object and then returns the object. For
instance, using R.tap, you can take a void function like debugLog

const debugLog = _.partial(logger, 'console', 'basic', 'MyLogger',
 'DEBUG');

and embed it within the composition of other functions. Here are some examples:

const debug = R.tap(debugLog);
const cleanInput = R.compose(normalize, debug, trim);
const isValidSsn = R.compose(debug, checkLengthSsn, debug, cleanInput);

Having the call to debug (based on R.tap) won’t alter the result of the program in any
way. In fact, this combinator throws away the result of the function passed into it (if
any). This will compute the result and also perform debugging along the way:

isValidSsn('444-44-4444');

// output
MyLogger [DEBUG] 444-44-4444 // clean input
MyLogger [DEBUG] 444444444 // check length
MyLogger [DEBUG] true // final result

4.6.3 Alternation (OR-combinator)

The alt combinator allows you to perform simple conditional logic when providing
default behavior in response to a function call. This combinator takes two functions
and returns the result of the first one if the value is defined (not false, null, or
undefined); otherwise, it returns the result of the second function. Let’s implement
it here:

const alt = function (func1, func2) {
 return function (val) {

return func1(val) || func2(val);
 }
};

Alternatively, you could also write this function succinctly using curry and lambdas:

const alt = R.curry((func1, func2, val) => func1(val) || func2(val));

114 CHAPTER 4 Toward modular, reusable code
You can use this combinator as part of the showStudent program to handle the case
when the fetch operation returns unsuccessfully, so that you can create a new student:

 const showStudent = R.compose(
append('#student-info'),
csv,
alt(findStudent, createNewStudent));

 showStudent('444-44-4444');

To understand what’s happening, think of this code emulating a simple if-else state-
ment equivalent to the imperative conditional logic:

 var student = findStudent('444-44-4444');
 if(student !== null) {

let info = csv(student);
append('#student-info', info);

 }
 else {

let newStudent = createNewStudent('444-44-4444');
let info = csv(newStudent);
append('#student-info', info);

 }

4.6.4 Sequence (S-combinator)

The seq combinator is used to loop over a sequence of functions. It takes two or more
functions as parameters and returns a new function, which runs all of them in
sequence against the same value. This is the implementation:

const seq = function(/*funcs*/) {
 const funcs = Array.prototype.slice.call(arguments);
 return function (val) {

funcs.forEach(function (fn) {
fn(val);

});
 };
};

With it, you can perform a sequence of related, yet independent, operations. For
instance, after finding the student object, you can use seq to both render it on the HTML
page and log it to the console. All functions will run in that order against the same stu-
dent object:

const showStudent = R.compose(
 seq(
 append('#student-info'),
 consoleLog),
 csv,
 findStudent));

115Managing control flow with functional combinators
The seq combinator doesn’t return a value; it just performs a set of actions one after
the other. If you want to inject it into the middle of a composition, you can use R.tap
to bridge the function with the rest.

4.6.5 Fork (join) combinator

The fork combinator is useful in cases where you need to process a single resource in
two different ways and then combine the results. This combinator takes three func-
tions: a join function and two terminal functions that process the provided input. The
result of each forked function is ultimately passed in to a join function of two argu-
ments, as shown in figure 4.14.

NOTE This isn’t to be confused with the Java fork-join framework, which
helps with multiprocessing. This comes as a fork combinator implementation
in Haskell and other functional toolkits.

This is the implementation:

const fork = function(join, func1, func2){
 return function(val) {

return join(func1(val), func2(val));
 };
};

Now let’s see it in action. Let’s revisit computing the average letter grade from an array
of numbers. You can use fork to coordinate the evaluation of three utility functions:

const computeAverageGrade =
R.compose(getLetterGrade, fork(R.divide, R.sum, R.length));

computeAverageGrade([99, 80, 89]); //-> 'B'

The next example checks whether the mean and median of a collection of grades
are equal:

const eqMedianAverage = fork(R.equals, R.median, R.mean);
eqMedianAverage([80, 90, 100])); //-> True
eqMedianAverage([81, 90, 100])); //-> False

func1 func2

fork

join

input

Figure 4.14 The fork combinator receives
three functions: a join and two fork
functions. The fork functions are executed
against the supplied input, and then the final
result is combined via join.

116 CHAPTER 4 Toward modular, reusable code
Some people view composition as restrictive, but you can see for yourself that it’s quite
the opposite: combinators unlock freedom and facilitate point-free programming.
Because combinators are pure, they can be composed into other combinators, provid-
ing an infinite number of alternatives to express and reduce the complexity of writing
any type of application. You’ll see them used again in the following chapters.

 Through the basic principles of immutability and purity, functional programming
enables a fine level of modularity and reusability of the functions that make up your
program. In chapter 2, you learned that in JavaScript, functions can also be used to
implement modules. Using these same principles, you can also compose and reuse
entire modules. I’ll leave this idea for you to contemplate on your own.

 Modular functional programs consist of abstract functions that can be understood
and reused independently and whose meaning is derived from rules governing their
composition. In this chapter, you learned that composing pure functions is the back-
bone of functional programming. These techniques take advantage of the abstraction
(via currying and partial application) of pure functions with the goal of making them
composable. So far, I haven’t talked about error handling, which is a critical part of
any robust, fault-tolerant application; that’s what we’ll visit next.

4.7 Summary
■ Functional chains and pipelines connect reusable and modular componen-

tized programs.
■ Ramda.js is a functional library adapted for currying and composition, with a

powerful arsenal of utility functions.
■ Currying and partial evaluation can be used to reduce the arity of pure func-

tions by partially evaluating a subset of a function’s arguments and transform-
ing them into unary functions.

■ You can break a task into simple functions and compose them together to arrive
at the entire solution.

■ Using function combinators allows you to orchestrate complicated program
flows to tackle any real-world problem as well as write in a point-free manner.

Design patterns
against complexity
Null-references … was a billion-dollar mistake.

—Tony Hoare, InfoQ

Some people mistakenly view functional programming as a paradigm devoted only
to academic problems, mostly numerical in nature, that are, for the most part,
oblivious to the probabilities of failure real-life systems deal with. In recent years,

This chapter covers
■ The issues with imperative error-handling

schemes
■ Using containers to prevent access to

invalid data
■ Implementing functors as a mechanism for

data transformation
■ Understanding monads as data types that

facilitate composition
■ Consolidating error-handling strategies with

monadic types
■ Interleaving and composing monadic types
117

118 CHAPTER 5 Design patterns against complexity
however, people are finding that functional programming can treat error handling
more elegantly than any other development style.

 Many issues can arise in software where data inadvertently becomes null or
undefined, exceptions are thrown, or network connectivity is lost, to name a few.
Our code needs to account for the potential of any of these issues occurring, which
unavoidably creates complexity. As a result, we spend countless hours making sure
our code throws and catches the proper exceptions and checks for null values
everywhere we can think of, and what do we get? Even more complex code—code
that doesn’t scale and becomes harder to reason about as the size and complexity of
applications increase.

 We need to work smarter, not harder. In this chapter, I’ll introduce the concept of
functors as a means to create simple data types on which functions can be mapped. A
functor is applied to data types called monads that contain specific behavior for deal-
ing with errors in different ways. Monads are one of the hardest concepts to grasp in
functional programming because the theory is deeply rooted in category theory,
which I won’t cover. My intention is to focus only on the practical aspects. Having said
that, I’ll slowly work my way into that topic, layering in some prerequisite concepts,
and then show how you can use monads to create fault-tolerant function compositions
in a way that imperative error-handling mechanism can’t.

5.1 Shortfalls of imperative error handling
JavaScript errors can occur in many situations, especially when an application fails to
communicate with a server or tries to access properties of a null object. Also, third-
party libraries can have functions throw exceptions to signal special error conditions.
Hence, we always need to be prepared for the worst and design with failure in mind,
instead of letting it become an afterthought and regretting it later. In the imperative
world, exceptions are handled via the try-catch idiom.

5.1.1 Error handling with try-catch

JavaScript’s current exception-handling mechanism is geared toward throwing and
catching exceptions through the popular try-catch structure present in most mod-
ern programming languages:

try {
 // code that might throw an exception in here
}
catch (e) {
 // statements to handle any exceptions
 console.log('ERROR' + e.message);
}

The purpose of this structure is to surround a piece of code that you deem to be
unsafe. Upon throwing an exception, the JavaScript runtime abruptly halts the

119Shortfalls of imperative error handling
program’s execution and creates a stack trace of all function calls leading up to the
problematic instruction. As you know, specific details about the error, such as the
message, line number, and filename, are populated into an object of type Error and
passed into the catch block. The catch block becomes a safe haven so that you can
potentially recover your program. For example, recall the findObject and find-
Student functions:

// findObject :: DB, String -> Object
const findObject = R.curry(function (db, id) {
 const result = find(db, id)
 if(!result) {

throw new Error('Object with ID [' + id + '] not found');
 }
 return result;
});

// findStudent :: String -> Student
const findStudent = findObject(DB('students'));

Because any of these functions can throw an exception, in practice you would need to
enclose them in a try-catch block when calling them:

try {
 var student = findStudent('444-44-4444');
}
catch (e) {
 console.log('ERROR' + e.message);
}

Just as you abstracted loops and conditional statements with functions before, you
need to abstract error handling. Clearly, functions that use try-catch as shown here
can’t be composed or chain together and put a great deal of pressure on the design
of your code.

5.1.2 Reasons not to throw exceptions in functional programs

The structured mechanism of throwing and catching exceptions in imperative
JavaScript code has many drawbacks and is incompatible with the functional design.
Functions that throw exceptions

■ Can’t be composed or chained like other functional artifacts.
■ Violate the principle of referential transparency that advocates a single, predict-

able value, because throwing exceptions constitutes another exit path from
your function calls.

■ Cause side effects to occur because an unanticipated unwinding of the stack
impacts the entire system beyond the function call.

120 CHAPTER 5 Design patterns against complexity
■ Violate the principle of non-locality because the code used to recover from the
error is distanced from the originating function call. When an error is thrown, a
function leaves the local stack and environment:

try {
var student = findStudent('444-44-4444');

... more lines of code in between
}
catch (e) {

console.log('ERROR: not found');

// Handle error here
}

■ Put a great deal of responsibility on the caller to declare matching catch blocks
to manage specific exceptions instead of just worrying about a function’s single
return value.

■ Are hard to use when multiple error conditions create nested levels of exception-
handling blocks:

var student = null;
try {
 student = findStudent('444-44-44444');
}
catch (e) {
 console.log('ERROR: Cannot locate students by SSN');

 try {
student = findStudentByAddress(new Address(...));

 }
 catch (e) {

console.log('ERROR: Student is no where to be found!');
 }
}

You’re probably asking yourself, “Is throwing exceptions completely off the table in
functional programming?” I don’t believe so. In practice, they can never be off the
table, because there are many factors outside of your control that you need to account
for. Also, you may be writing code against a library outside of your control that imple-
ments exceptions.

 Using exceptions can be effective for certain edge cases. In checkType in chapter 4,
you used an exception to signal a fundamental misuse of the API. They’re also useful to
signal unrecoverable conditions like RangeError: Maximum call stack size exceeded,
which I’ll talk about in chapter 7. Throwing exceptions has a place but shouldn’t be
done excessively. A common scenario that occurs in JavaScript is the infamous Type-
Error resulting from invoking a function on a null object.

121Building a better solution: functors
5.1.3 Problems with null-checking

The alternative to failing abruptly from a function call is to return null. That, at least,
guarantees only one route that leaves a function call, but it’s not any better. Functions
that return null create a different responsibility for users: pesky null checks. Con-
sider the function getCountry, which is in charge of reading a student’s address and
then country:

function getCountry(student) {
 let school = student.getSchool();
 if(school !== null) {

let addr = school.getAddress();
if(addr !== null) {
var country = addr.getCountry();
return country;

}
return null;

 }
 throw new Error('Error extracting country info');
}

At a glance, this function should have been simple to implement—after all, it’s just
extracting an object’s property. I could have created a simple lens that focuses on this
property; in the event of a null address, a lens is smart enough to return undefined,
but it doesn’t help me to print an error message.

 Instead, I ended up with lots of lines of code to defend myself from unexpected
behavior. Defensively wrapping code with lots of try-catch or null checks is cow-
ardly. Wouldn’t it be great to be able to handle errors effectively while avoiding all of
this unnecessary boilerplate code?

5.2 Building a better solution: functors
Functional error handling is a radically different approach to properly cope with
the adversities found in software systems. The idea, however, is somewhat similar:
create a safety box (a container, if you will) around potentially hazardous code (see
figure 5.1).

try {

var student = findStudent('444-44-4444');

... more lines of code

}

catch (e) {

console.log('ERROR: Student not found!');

// Handle missing student

}

Figure 5.1 The try-catch
structure invisibly creates a safety
box around functions that can
throw exceptions. This safety box is
materialized into a container.

122 CHAPTER 5 Design patterns against complexity
In functional programming, this notion of boxing the dangerous code still applies,
but you throw away the try-catch block. Now, here’s the big difference. Walling off
impurity is made a first-class citizen in functional programming by the use of func-
tional data types. Let’s begin with the most basic type and move into the more
advanced ones.

5.2.1 Wrapping unsafe values

Containerizing (or wrapping) values is a fundamental design pattern in functional
programming because it guards direct access to the values so they can be manipulated
safely and immutably in your programs. It’s like wearing armor before going to battle.
Accessing a wrapped value can only be done by mapping an operation to its container. In
this chapter, I’ll talk extensively about the concept of a map, but you already learned
about this in chapter 3 when you used map on arrays—the array was the container of
values, in that case.

 It turns out you can map functions to much more than just arrays. In functional
JavaScript, a map is nothing more than a function; this idea comes from referential trans-
parency, where a function must always “map to” the same result given the same input.
So you can also think of map as a gate that allows you to plug in a lambda expression
with specific behavior that transforms an encapsulated value. In the case of arrays, you
used map to create a new array with the transformed values.

 Let’s illustrate this concept with a simple data type called Wrapper, in the following
listing. Although this type is simple, the underlying principle is extremely powerful
and will pave the way for the next sections in this chapter, so it’s important that you
understand it.

class Wrapper {
 constructor(value) {

this._value = value;
 }

 // map :: (A -> B) -> A -> B
 map(f) {

return f(this.val);
 };

 toString() {
return 'Wrapper (' + this.value + ')';

 }
}

// wrap :: A -> Wrapper(A)
const wrap = (val) => new Wrapper(val);

You can use a wrapper object to encapsulate a potentially erroneous value. Because
you won’t have direct access to it, the only way to extract it is to use the identity

Listing 5.1 Functional data type to wrap values

Simple type that stores a
single value of any type

Maps a function over this
type (just like arrays)

Helper function that
quickly creates wrappers
around values

123Building a better solution: functors
function you learned about in chapter 4 (notice there’s no explicit get method on
this wrapper type). Certainly JavaScript will give you easy access to this value, but the
point to understand here is that once the value enters the container, it can’t directly
retrieved or transformed (like a virtual barrier); see figure 5.2.

Here’s a concrete example using a valid value:

const wrappedValue = wrap('Get Functional');
wrappedValue.map(R.identity); //-> 'Get Functional'

You can map any function to this container to either log to the console or manipulate
it as needed:

wrappedValue.map(log);
wrappedValue.map(R.toUpper); //-> 'GET FUNCTIONAL'

The benefit of this simple idea is that any code written against these wrappers needs to
be able to “reach into the container” via Wrapper.map in order to use the guarded
value contained within. But if the value happens to be null or undefined, the respon-
sibility is placed on the caller, which may or may not gracefully handle this case. Later,
you’ll see a better alternative:

const wrappedNull = wrap(null);
wrappedNull.map(doWork);

As you can see from this example, to manipulate a value within a guarded, wrapped
context, you need to apply a function to it; you can’t invoke a function directly. What

guarded

identity

map

identity returns
the same value

Wrapper

Figure 5.2 The Wrapper type uses map to safely access and
manipulate values. In this case, you’re mapping the identity function
over the container to extract the value as is from the container.

Extracts the
value

Runs the function over
the internal value

doWork is given the
burden of null-checking.

124 CHAPTER 5 Design patterns against complexity
to do in the event of an error can be delegated to concrete wrapper types. In other
words, you can check for null before calling the function, or check for an empty
string, a negative number, and so on. Hence, the semantic of Wrapper.map is deter-
mined by the specific implementation of the wrapping type.

 Let’s not get ahead of ourselves; we have some more groundwork to cover. Con-
sider this slightly different variation of map, called fmap:

// fmap :: (A -> B) -> Wrapper[A] -> Wrapper[B]
Wrapper.prototype.fmap = function (f) {
 return wrap(f(this.val));
};

fmap knows how to apply functions to values wrapped in a context. It first opens the
container, then applies the given function to its value, and finally closes the value back
into a new container of the same type. This type of function is known as a functor.

5.2.2 Functors explained

In essence, a functor is nothing more than a data structure that you can map func-
tions over with the purpose of lifting values into a wrapper, modifying them, and then
putting them back into a wrapper. It’s a design pattern that defines semantics for how
fmap should work. Here’s the general definition of fmap:

fmap :: (A -> B) -> Wrapper(A) -> Wrapper(B)

The function fmap takes a function (from A -> B) and a functor (wrapped context)
Wrapper(A) and returns a new functor Wrapper(B) containing the result of applying
said function to the value and closing it once more. Figure 5.3 shows a quick example
that uses the increment function as a mapping function from A -> B (except in this
case, A and B are the same types).

 Notice that because fmap basically returns a new copy of the container at each
invocation, much as lenses (chapter 2) work, it can be considered immutable. In fig-
ure 5.3, mapping the increment over Wrapper(1) returns a completely new object,

Wraps the transformed value
in the container before
returning it to the caller

Wrapper is any
container type.

increment

fmap
Wrapper

1

Wrapper

1

Apply function

Wrapper

2

wrap

Figure 5.3 A value of 1 is contained within Wrapper. The functor is called with the wrapper and the
increment function, which transforms the value internally and closes it back into a container.

125Building a better solution: functors
Wrapper(2). Let’s go over a simple example before you begin applying functors to
solve more-practical problems. Consider a simple 2 + 3 = 5 addition using functors.
You can curry an add function to create a plus3 function:

const plus = R.curry((a, b) => a + b);
const plus3 = plus(3);

Now you’ll store the number 2 into a Wrapper functor:

const two = wrap(2);

Calling fmap to map plus3 over the container performs addition:

const five = two.fmap(plus3); //-> Wrapper(5)
five.map(R.identity); //-> 5

The outcome of fmap yields another context of the same type, which you can map
R.identity over to extract its value. Notice that because the value never escapes the
wrapper, you can map as many functions as you want to it and transform its value at
each step of the way:

two.fmap(plus3).fmap(plus10); //-> Wrapper(15)

This can be a bit tricky to understand, so figure 5.4 shows how fmap works with plus3.

The purpose of having fmap return the same type (or wrap the result again into a con-
tainer of the same type) is so you can continue chaining operations. Consider the fol-
lowing example, which maps plus3 on a wrapped value and logs the result.

const two = wrap(2);
two.fmap(plus3).fmap(R.tap(infoLogger)); //-> Wrapper(5)

Listing 5.2 Chaining functors to apply additional behavior to a given context

Returns the value
in a context

plus3

fmap
Wrapper

2

Wrapper

2

Apply function

Wrapper

5

wrap

Figure 5.4 The value 2 has been added to a Wrapper container. The functor is used to manipulate
this value by unwrapping it from the context, applying the given function to it, and rewrapping the value
back into a new context.

126 CHAPTER 5 Design patterns against complexity
Running this code prints the following message on the console:

InfoLogger [INFO] 5

Does this pattern of chaining functions look familiar? This is intentional: you’ve been
using functors all along without realizing it. This is exactly what the map and filter
functions do for arrays (you can review sections 3.3.2 and 3.3.4 if you need to):

map :: (A -> B) -> Array(A) -> Array(B)
filter :: (A -> Boolean) -> Array(A) -> Array(A)

map and filter are type-preserving functors, which is what activates the chaining pat-
tern. Consider another functor you’ve seen all along: compose. As you learned in
chapter 4, it’s a mapping from functions into other functions (also type-preserving):

compose :: (B -> C) -> (A -> B) -> (A -> C)

Functors, like any other functional programming artifact, are governed by some impor-
tant properties:

■ They must be side effect–free. You can map the R.identity function to obtain the
same value over a context. This proves functors are side effect–free and pre-
serves the structure of the wrapped value:

wrap('Get Functional').fmap(R.identity); //-> Wrapper('Get Functional')

■ They must be composable. This property indicates that the composition of a func-
tion applied to fmap should be exactly the same as chaining fmap functions
together. As a result, the following expression is exactly equivalent to the pro-
gram in listing 5.2:

two.fmap(R.compose(plus3, R.tap(infoLogger))).map(R.identity); //-> 5

It’s no surprise that functors have these requirements. As a result, they’re prohibited
from throwing exceptions, mutating elements, or altering a function’s behavior. Their
practical purpose is to create a context or an abstraction that allows you to securely
manipulate and apply operations to values without changing any original values. This
is evident in the way map transforms one array into another without altering the origi-
nal array; this concept equally translates to any container type.

 But functors by themselves aren’t compelling, because they’re not expected to
know how to handle cases with null data. Ramda’s R.compose, for instance, will break
if a null function reference is passed into it. This isn’t a flaw in the design; it’s inten-
tional. Functors map functions of one type to another. More-specialized behavior can be
found in functional data types called monads. Among other things, monads can
streamline error handling in your code, allowing you to write fluent function compo-
sitions. What’s their relationship to functors? Monads are the containers that functors
“reach into.”

127Functional error handling using monads
 Don’t let the term monad discourage you; if you’ve written jQuery code, then
monads should be familiar. Behind all the complicated rules and theories, the pur-
pose of monads is to provide an abstraction over some resource—whether it’s a simple
value, a DOM element, an event, or an AJAX call—so that you can safely process the
data contained within it. In this respect, you can classify jQuery as a DOM monad:

$('#student-info').fadeIn(3000).text(student.fullname());

This code behaves like a monad because jQuery is taking charge of applying the
fadeIn and text transformations safely. If the student-info panel doesn’t exist,
applying methods to the empty jQuery object will fail gracefully rather than throw
exceptions. Monads aimed at error handling have this powerful quality: safely propa-
gating errors so your application is fault-tolerant. Let’s dive into monads next.

5.3 Functional error handling using monads
Monads solve all the problems of traditional error handling outlined earlier when
applied to functional programs. But before diving into this topic, let’s first understand
a limitation in the use of functors. As you saw earlier, you can use functors to safely
apply functions to values in an immutable and safe manner. But when used through-
out your code, functors can easily get you into an uncomfortable situation. Consider
an example of fetching a student record by SSN and then extracting its address prop-
erty. For this task, you can identify two functions—findStudent and getAddress—
both using functor objects to create a safe context around their returned values:

const findStudent = R.curry(function(db, ssn) {
 return wrap(find(db, ssn));
});

const getAddress = function(student) {
 return wrap(student.fmap(R.prop('address')));
}

Just as you’ve done all along, to run this program, you compose both functions together:

const studentAddress = R.compose(
 getAddress,
 findStudent(DB('student'))
);

Although you avoid all error-handling code, the result isn’t what you expect. Instead
of a wrapped address object, the returned value is a doubly wrapped address object:

studentAddress('444-44-4444'); //-> Wrapper(Wrapper(address))

Wraps the fetched object to
safeguard against the possibility
of not finding an object

Maps Ramda’s R.prop()
function over the object to
extract its address, and then
wraps the result

128 CHAPTER 5 Design patterns against complexity
In order to extract this value, you have to apply R.identity twice:

studentAddress('444-44-4444').map(R.identity).map(R.identity);

Certainly you don’t want to access data this way in your code; just think about the
case when you have three or four composed functions. You need a better solution.
Enter monads.

5.3.1 Monads: from control flow to data flow

Monads are similar to functors, except that they can delegate to special logic when
handling certain cases. Let’s examine this idea with a quick example. Consider apply-
ing a function half :: Number -> Number to any wrapped value, as shown in figure 5.5:

Wrapper(2).fmap(half); //-> Wrapper(1)
Wrapper(3).fmap(half); //-> Wrapper(1.5)

But now suppose you want to restrict half to even numbers only. As is, the functor
only knows how to apply the given function and close the result back in a wrapper; it
has no additional logic. What can you do if you encounter an odd input value? You
could return null or throw an exception. But a better strategy is to make this function
more honest about how it handles each case and state that it returns a valid number
when given the correct input value, or ignores it otherwise.

 In the spirit of Wrapper, consider another container called Empty:

const Empty = function (_) {
 ;
};

// map :: (A -> B) -> A -> B
Empty.prototype.map = function() { return this; };

// empty :: _ -> Empty
const empty = () => new Empty();

Ugh!

half :: Number -> NumberWrapper

2

Wrapper

1

Figure 5.5 Functors apply a function to a wrapped value. In this case, the wrapped value
2 is halved, returning a wrapped value of 1.

noop. Empty doesn’t store a
value; it represents the concept
of “empty” or “nothing.”

Similarly, mapping a
function to an Empty
skips the operation.

129Functional error handling using monads

n
With this new requirement, you can implement half in the following way (figure 5.6):

const isEven = (n) => Number.isFinite(n) && (n % 2 == 0);
const half = (val) => isEven(val) ? wrap(val / 2) : empty();

half(4); //-> Wrapper(2)
half(3); //-> Empty

A monad exists when you create a whole data type around this idea of lifting values
inside containers and defining the rules of containment. Like functors, it’s a design
pattern used to describe computations as a sequence of steps without having any
knowledge of the value they’re operating on. Functors allow you to protect values, but
when used with composition, monads are what let you manage data flow in a safe and
side effect–free manner. In the previous example, you return an Empty container
instead of null when trying to halve an odd number, which lets you apply operations
on values without being concerned about errors that occur:

half(4).fmap(plus3); //-> Wrapper(5)
half(3).fmap(plus3); //-> Empty

Monads can be targeted at a variety of problems. The ones we’ll study in this chapter
can be used to consolidate and control the complexity of imperative error-handling
mechanisms and, thus, allow you to reason about your code more effectively.

 Theoretically, monads are dependent on the type system of a language. In fact,
many people advocate that you can only understand them if you have explicit types,
as in Haskell. But you’ll see that having a typeless language like JavaScript makes

Helper functio
distinguishes
between odd
and even
numbers

Function half only works on
even numbers, returning an
empty container otherwise

half :: Number -> Wrapper(Number)Wrapper

2

Wrapper

1

half :: Number -> EmptyWrapper

3

Empty

_

or

Figure 5.6 Function half can return either a wrapped value or an empty container,
depending on the nature of the input.

The implicit container knows
how to map functions even
when input is invalid.

130 CHAPTER 5 Design patterns against complexity
monads easy to read and frees you from having to deal with all the intricacies of a
static type system.

 You need to understand these two important concepts:

■ Monad—Provides the abstract interface for monadic operations
■ Monadic type—A particular concrete implementation of this interface

Monadic types share a lot of the same principles as the Wrapper object you learned
about at the beginning of the chapter. But every monad is different and, depending
on its purpose, can define different semantics driving its behavior (that is, for how map
or fmap should work). These types define what it means to chain operations or nest
functions of that type together, yet all must abide by the following interface:

■ Type constructor—Creates monadic types (similar to the Wrapper constructor).
■ Unit function—Inserts a value of a certain type into a monadic structure (similar

to the wrap and empty functions you saw earlier). When implemented in the
monad, though, this function is called of.

■ Bind function—Chains operations together (this is a functor’s fmap, also known as
flatMap). From here on, I’ll use the name map, for short. By the way, this bind
function has nothing to do with the function-binding concept of chapter 4.

■ Join operation—Flattens layers of monadic structures into one. This is especially
important when you’re composing multiple monad-returning functions.

Applying this new interface to the Wrapper type, you can refactor it in the following way.

class Wrapper {
 constructor(value) {

this._value = value;
 }

 static of(a) {
return new Wrapper(a);

 }

 map(f) {
return Wrapper.of(f(this.value));

 }

 join() {
if(!(this.value instanceof Wrapper)) {

return this;
}
return this.value.join();

 }

 toString() {
return `Wrapper (${this.value})`;

 }
 }

Listing 5.3 Wrapper monad

Type
constructor

Unit function

Bind function
(the functor)

Flattens
nested layers

Returns a textual
representation of
this structure

131Functional error handling using monads
Wrapper uses the functor map to lift data into the container so that you can manipulate
it side effect–free—walled off from the outside world. Not surprisingly, the _.iden-
tity function is used to inspect its contents:

Wrapper.of('Hello Monads!')
 .map(R.toUpper)
 .map(R.identity); //-> Wrapper('HELLO MONADS!')

The map operation is considered a neutral functor because it does nothing more than
map the function and close it. Later, you’ll see other monads add their own special
touches to map. The join function is used to flatten nested structures—like peeling
an onion. This can be used to eliminate the issues found with functors earlier, as
shown next.

// findObject :: DB -> String -> Wrapper
const findObject = R.curry(function(db, id) {
 return Wrapper.of(find(db, id));
});

// getAddress :: Student -> Wrapper
const getAddress = function(student) {
 return Wrapper.of(student.map(R.prop('address')));
}

const studentAddress = R.compose(getAddress, findObject(DB('student')));

studentAddress('444-44-4444').join().get(); // Address

Because the composition in listing 5.4 returns a set of nested wrappers, the join oper-
ation is used to flatten out the structure into a single layer, as in this example:

Wrapper.of(Wrapper.of(Wrapper.of('Get Functional'))).join();

//-> Wrapper('Get Functional')

Figure 5.7 illustrates the join operation.

Listing 5.4 Flattening a monadic structure

Get Functional

Wrapper

Wrapper

join R.identity

Get FunctionalGet Functional

Wrapper

Wrapper

Flatten these layers

Figure 5.7 Using the join operation to recursively flatten a nested monad structure, like peeling
an onion

132 CHAPTER 5 Design patterns against complexity
With regard to arrays (which are also containers that can be mapped to), this is analo-
gous to the R.flatten operation:

R.flatten([1, 2, [3, 4], 5, [6, [7, 8, [9, [10, 11], 12]]]]);

//=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Monads typically have many more operations that support their specific behavior, and
this minimal interface is merely a subset of its entire API. A monad itself, though, is
abstract and lacks any real meaning. Only when implemented as a concrete type does
its power begins to shine. Fortunately, most functional programming code can be
implemented with just a few popular concrete types, which eliminates lots of boiler-
plate code while achieving an immense amount of work. Now, let’s look at some full-
fledged monads: Maybe, Either, and IO.

5.3.2 Error handling with Maybe and Either monads

In addition to wrapping valid values, monadic structures can also be used to model
the absence of one—as null or undefined. Functional programming reifies errors
(turns them into a “thing”) by using the Maybe and Either types to do the following:

■ Wall off impurity
■ Consolidate null-check logic
■ Avoid exception throwing
■ Support compositionally of functions
■ Centralize logic for providing default values

Both types provide these benefits in their own way. I’ll begin with the Maybe monad.

CONSOLIDATING NULL CHECKS WITH MAYBE

The Maybe monad focuses on effectively consolidating null-check logic. Maybe is an
empty type (a marker type) with two concrete subtypes:

■ Just(value)—Represents a container that wraps a defined value.
■ Nothing()—Represents either a container that has no value or a failure that

needs no additional information. In the case of a Nothing, you can still apply
functions over its (in this case, nonexistent) value.

These subtypes implement all the monadic properties you saw earlier, as well as some
additional behavior unique to their purpose. Here’s an implementation of Maybe.

class Maybe {
 static just(a) {

return new Just(a);
 }

 static nothing() {
return new Nothing();

 }

Listing 5.5 Maybe monad with subclasses Just and Nothing

Container type
(parent class)

133Functional error handling using monads
 static fromNullable(a) {
return a !== null ? just(a) : nothing();

 }

 static of(a) {
return just(a);

 }

 get isNothing() {
return false;

 }

 get isJust() {
return false;

 }
}

class Just extends Maybe {
 constructor(value) {

super();
this._value = value;

 }

 get value() {
return this._value;

 }

 map(f) {
return of(f(this.value));

 }

 getOrElse() {
return this.value;

 }

 filter(f) {
Maybe.fromNullable(f(this.value) ? this.value : null);

 }

 get isJust() {
return true;

 }

 toString () {
return `Maybe.Just(${this.value})`;

 }
}

class Nothing extends Maybe {

 map(f) {
 return this;
 }

 get value() {
throw new TypeError('Can't extract the value

of a Nothing.');
 }

Builds a Maybe from a nullable
type (constructor function). If
the value lifted in the monad is
null, instantiates a Nothing;
otherwise, stores the value in a
Just subtype to handle the
presence of a value.

Subtype Just to
handle the presence
of a value

Maps a function to Just,
transforms its value, and stores
it back into the container

Extracts the value from the
structure or a provided default
monad unity operation

Returns a textual
representation of
this structure

Subtype Nothing to
protect against the
absence of a value

Attempting to extract a value
from a Nothing type generates
an exception indicating a bad
use of the monad (I’ll discuss
this shortly); otherwise, the
value is returned.

134 CHAPTER 5 Design patterns against complexity
 getOrElse(other) {
return other;

 }

 filter() {
return this.value;

 }

 get isNothing() {
return true;

 }

 toString() {
 return 'Maybe.Nothing';
 }
}

Maybe explicitly abstracts working with “nullable” values (null and undefined) so
you’re free to worry about more important things. As you can see, Maybe is basically an
abstract umbrella object for the concrete monadic structures Just and Nothing, each
containing its own implementations of the monadic properties. I mentioned earlier
that the implementation for the behavior of the monadic operations ultimately
depends on the semantics imparted by a concrete type. For instance, map behaves dif-
ferently depending on whether the type is a Nothing or a Just. Visually, a Maybe struc-
ture can store a student object as shown in figure 5.8:

// findStudent :: String -> Maybe(Student)
function findStudent(ssn)

This monad is frequently used with calls that contain uncertainty: querying a database,
looking up values in a collection, requesting data from the server, and so on. Let’s con-
tinue with the example started in listing 5.4 of extracting the address property of a stu-
dent object that’s fetched from a local store. Because a record may or may not exist, you
wrap the result of the fetch in a Maybe and add the safe prefix to these operations:

// safeFindObject :: DB -> String -> Maybe
const safeFindObject = R.curry(function(db, id) {
 return Maybe.fromNullable(find(db, id));
});

Ignores the value and
returns the other

If a value is present and matches
the given predicate, returns a
Just describing the value;
otherwise returns a Nothing

Returns a textual
representation of
this structure

Just

student

Nothing

Maybe

Figure 5.8 A Maybe structure has
two subtypes: Just and Nothing.
Calling findStudent returns its
value wrapped in Just or the absence
of a value in Nothing.

135Functional error handling using monads
// safeFindStudent :: String -> Maybe(Student)
const safeFindStudent = safeFindObject(DB('student'));

const address = safeFindStudent('444-44-4444').map(R.prop('address'));
address; //-> Just(Address(...)) or Nothing

Another benefit of wrapping results with monads is that it embellishes the function sig-
nature, making it self-documented and honest about the uncertainty of its return value.
Maybe.fromNullable is useful because it handles the null-checking on your behalf.
Calling safeFindStudent will produce a Just(Address(...)) if it encounters a valid
value or a Nothing otherwise. Mapping R.prop over the monad behaves as expected. In
addition, it does a good job of detecting programmatic errors or misuses of an API call:
you can use it to enforce preconditions indicating whether parameters are permitted to
be invalid. If an invalid value is passed into Maybe.fromNullable, it produces a Nothing
type, such that calling get() to open the container will throw an exception:

TypeError: Can't extract the value of a Nothing.

Monads expect you to stick to mapping functions over them instead of directly
extracting their contents. Another useful operation of Maybe is getOrElse as an alter-
native to returning default values. Consider the example of setting the value of a form
field, or a generic default in case there’s no data to set:

const userName = findStudent('444-44-4444').map(R.prop('firstname'));

document.querySelector('#student-firstname').value =
 username.getOrElse('Enter first name');

If the fetch operation is successful, the student’s username is displayed; otherwise, the
else branch executes printing the default string.

Now let’s revisit the pessimistic null-check anti-pattern shown earlier that rears its
ugly head frequently in object-oriented software. Consider the getCountry function:

function getCountry(student) {
 let school = student.school();
 if(school !== null) {

let addr = school.address();
if(addr !== null) {

return addr.country();
}

 }

Maybe in disguise
You may see Maybe appear in different forms such as the Optional or Option type,
used in languages like Java 8 and Scala. Instead of Just and Nothing, these lan-
guages declare Some and None. Semantically, though, they do the same things.

136 CHAPTER 5 Design patterns against complexity
 return 'Country does not exist!';
}

What a drag. If the function returns 'Country does not exist!', which statement
caused the failure? In this code, it’s hard to discern which line is the problematic
one. When you write code like this, you aren’t paying attention to style and correct-
ness; you’re defensively patching function calls. Without monadic traits, you’re basi-
cally stuck with null checks sprinkled all over the place to prevent TypeError
exceptions. The Maybe structure encapsulates this behavior in a reusable manner.
Consider this example:

const country = R.compose(getCountry, safeFindStudent);

Because safeFindStudent returns a wrapped student object, you can eliminate this
defensive programming habit and safely propagate the invalid value. Here’s the new
getCountry:

const getCountry = (student) => student
.map(R.prop('school'))
.map(R.prop('address'))
.map(R.prop('country'))

.getOrElse('Country does not exist!');

In the event that any of these properties returns null, this error is propagated
through all the layers as a Nothing, so that all subsequent operations are gracefully
skipped. The program is not only declarative and elegant, but also fault-tolerant.

Function lifting
Look closely at this function:

const safeFindObject = R.curry(function(db, id) {
 return Maybe.fromNullable(find(db, id));
});

Notice that its name is prefixed with safe and it uses a monad directly to wrap its
return value. This is a good practice because you make it clear to the caller that the
function is housing a potentially dangerous value. Does this mean you need to instru-
ment every function in your program with monads? Not necessarily. A technique
called function lifting can transform any ordinary function into a function that works
on a container, making it “safe.” It can be a handy utility so that you aren’t obligated
to change your existing implementations:

const lift = R.curry(function (f, value) {
 return Maybe.fromNullable(value).map(f);
});

If any of the steps yields
a Nothing result, all
subsequent operations
will be skipped.

137Functional error handling using monads
Clearly, Maybe excels at centrally managing checks for invalid data, but it provides
Nothing (pun intended) with regard to what went wrong. We need a more proactive
solution—one that can let us know the cause of the failure. For this, the best tool to
use is the Either monad.

RECOVERING FROM FAILURE WITH EITHER

Either is slightly different from Maybe. Either is a structure that represents a logical
separation between two values a and b that would never occur at the same time. This
type models two cases:

■ Left(a)—Contains a possible error message or throwable exception object
■ Right(b)—Contains a successful value

Either is typically implemented with a bias on the right operand, which means map-
ping a function over a container is always performed on the Right(b) subtype. It’s
analogous to the Just branch of Maybe.

 A common use of Either is to hold the results of a computation that may fail to
provide additional information as to what the failure is. In unrecoverable cases, the
left can contain the proper exception object to throw. The following listing shows the
implementation of the Either monad.

class Either {
 constructor(value) {

this._value = value;
 }

 get value() {
return this._value;

 }

 static left(a) {
 return new Left(a);
 }

Instead of directly using the monad in the body of the function, you can keep it as is

const findObject = R.curry(function(db, id) {
 return find(db, id);
});

and use lift to bring this function into the container:

const safeFindObject = R.compose(lift, findObject);
safeFindObject(DB('student'), '444-44-4444');

Lifting can work with any function on any monad!

Listing 5.6 Either monad with Left and Right subclasses

Constructor function for
either type. This can hold
an exception or a successful
value (right bias).

138 CHAPTER 5 Design patterns against complexity
 static right(a) {
 return new Right(a);
 }

 static fromNullable(val) {
return val !== null ? right(val): left(val);

 }

 static of(a){
return right(a);

 }
}

class Left extends Either {

 map(_) {
 return this; // noop
 }

 get value() {
throw new TypeError('Can't extract the

value of a Left(a).');
 }

 getOrElse(other) {
return other;

 }

 orElse(f) {
return f(this.value);

 }

 chain(f) {
return this;

 }

 getOrElseThrow(a) {
throw new Error(a);

 }

 filter(f) {
return this;

 }

 toString() {
return `Either.Left(${this.value})`;

 }
 }

class Right extends Either {
 map(f) {

return Either.of(f(this.value));
 }

 getOrElse(other) {
return this.value;

 }

Takes the Left case
with an invalid value,
or else the Right

Creates a new
instance holding a
value on the Right

Transforms the value on the Right
structure by mapping a function to
it; does nothing on the Left

Extracts the Right value of the
structure if it exists; otherwise,
produces a TypeError

Extracts the Right value; if
it doesn’t have one, returns
the given default

Applies a given function to a Left
value; does nothing on the Right

Applies a function to a Right and
returns that value; does nothing on
the Left. This is the first time you
encounter chain (explained later).

Throws an exception with the value only
on the Left structure; otherwise, ignores
the exception and returns the valid value

If a value is present and meets the given
predicate, returns a Right describing the
value; otherwise returns an empty Left

Transforms the value on the Right
structure by mapping a function to
it; does nothing on the Left

Extracts the Right value; if
it doesn’t have one, returns
the given default

139Functional error handling using monads
 orElse() {
return this;

 }

 chain(f) {
return f(this.value);

 }

 getOrElseThrow(_) {
return this.value;

 }

 filter(f) {
return Either.fromNullable(f(this.value) ? this.value : null);

 }

 toString() {
return `Either.Right(${this.value})`;

 }
 }

Notice in both the Maybe and Either types that some operations are empty (no-op).
These are deliberate and are meant to act as placeholders that allow functions to
safely skip execution when the specific monad deems appropriate.

 Now, let’s put Either to use. This monad offers another alternative for the
safeFindObject function:

const safeFindObject = R.curry(function (db, id) {
 const obj = find(db, id);
 if(obj) {

return Either.of(obj);
 }
 return Either.Left(`Object not found with ID: ${id}`);
});

If the data access operation is successful, a student object is stored in the right side
(biased to the right); otherwise, an error message is provided on the left, as shown in
figure 5.9.

Applies a given function to a Left
value; does nothing on the Right

Applies a function to a Right and
returns that value; does nothing on
the Left. This is the first time you
encounter chain (explained later).

Throws an exception with the value only
on the Left structure; otherwise, ignores
the exception and returns the valid value

If a value
is present
and meets
the given

predicate,
returns
a Right

describing
the value;
otherwise
returns an
empty Left

Could also use
Either.fromNullable() to
abstract the entire if-else
statement. I did it this way
for illustration purposes.

The Left structure
can hold values
as well.

Left

Error('ID not found:

444-44-4444')

Right

Either

obj
Figure 5.9 An Either structure can store an
object (on the right) or an Error (on the left)
with proper stack trace information. This is
useful to provide a single return value that can
also contain an error message in case of failure.

140 CHAPTER 5 Design patterns against complexity
Let’s pause for a second. You may be wondering, “Why not use the 2-tuple (or a Pair)
type discussed in chapter 4 to capture the object and a message?” There’s a subtle rea-
son. Tuples represent what’s known as a product type, which implies a logical AND rela-
tionship among its operands. In the case of error handling, it’s more appropriate to
use mutually exclusive types to model the case of a value either existing OR not; in the
case of error handling, both could not exist simultaneously.

 With Either, you can extract the result by calling getOrElse (providing a suitable
default just in case):

const findStudent = safeFindObject(DB('student'));
findStudent('444-44-4444').getOrElse(new Student()); //->Right(Student)

Unlike the Maybe.Nothing structure, the Either.Left structure can contain values to
which functions can be applied. If findStudent doesn’t return an object, you can use
the orElse function on the Left operand to log the error:

const errorLogger = _.partial(logger, 'console', 'basic', 'MyErrorLogger',
 'ERROR');
findStudent('444-44-4444').orElse(errorLogger);

This prints to the console:

MyErrorLogger [ERROR] Student not found with ID: 444-44-4444

The Either structure can also be used to guard your code against unpredictable func-
tions (implemented by you or someone else) that may throw exceptions. This makes
your functions more type-safe and side effect–free by eliminating the exception early
on instead of propagating it. Consider an example using JavaScript’s decodeURI-
Component function, which can produce a URI error if it’s invalid:

function decode(url) {
 try {

const result = decodeURIComponent(url);
return Either.of(result);

 }
 catch (uriError) {

return Either.Left(uriError);
 }
}

As shown in this code, it’s also customary to populate Either.Left with an error
object that contains stack trace information as well as an error message; this object can
be thrown if necessary to signal an unrecoverable operation. Suppose you want to nav-
igate to a given URL that needs to be decoded first. Here’s the function invoked with
invalid and valid input:

const parse = (url) => url.parseUrl();
decode('%').map(parse); //-> Left(Error('URI malformed'))
decode('http%3A%2F%2Fexample.com').map(parse);
//-> Right(true)

Throws a
URIError.

This function
was created in
section 4.4.2.

141Functional error handling using monads
Functional programming leads to avoiding ever having to throw exceptions. Instead,
you can use this monad for lazy exception throwing by storing the exception object
into the left structure. Only when the left structure is unpacked does the exception
take place:

...

catch (uriError) {
 return Either.Left(uriError);
}

Now you’ve learned how monads help emulate a try-catch mechanism that contains
potentially hazardous function calls. Scala implements a similar notion using a type
called Try—the functional alternative to try-catch. Although not fully a monad, Try
represents a computation they may either result in an exception or return a fully com-
puted value. It’s semantically equivalent to Either, and it involves two cases classes for
Success and Failure.

Monads can help you cope with uncertainty and possibilities for failure in real-world
software. But how do you interact with the outside world?

5.3.3 Interacting with external resources using the IO monad

Haskell is believed to be the only programming language that relies heavily on
monads for IO operations: file read/writes, writing to the screen, and so on. You can
translate that to JavaScript with code that looks like this:

IO.of('An unsafe operation').map(alert);

Although this is a simple example, you can see intricacies of IO tucked into lazy
monadic operations that are passed to the platform to execute (in this case, a simple
alert message). But JavaScript unavoidably needs to be able to interact with the ever-
changing, shared, stateful DOM. As a result, any operation performed on the DOM,

Functional programming projects worth exploring
Most of the topics explored in this and the previous chapter, such as partial applica-
tion, tuples, composition, functors, and monads, as well as other topics presented
later, are implemented as modules in a formal specification called Fantasy Land
(https://github.com/fantasyland). Fantasy Land is a reference implementation of
functional concepts that defines how to implement a functional algebra in JavaScript.
We’ve been using libraries like Lodash and Ramda for their ease of use; neverthe-
less, Fantasy Land and a functional library called Folktale (http://folktalejs.org/) are
worth exploring if you’re eager to get deep into more-functional data types.

https://github.com/fantasyland
http://folktalejs.org/

142 CHAPTER 5 Design patterns against complexity
whether read or write, causes side effects and violates referential transparency. Let’s
begin with most basic IO operations:

const read = function(document, id) {
 return document.querySelector(`\#${id}`).innerHTML;
}

const write = function(document, id, val) {
 document.querySelector(`\#${id}`).innerHTML = value;
};

When executed independently, the output of these standalone functions can never be
guaranteed. Not only does order of execution matter, but, for instance, calling read
multiple times can yield different responses if the DOM was modified between calls by
another call to write. Remember, the main reason for isolating impure behavior from
pure code, as you did in chapter 4 with showStudent, is to always guarantee a consis-
tent result.

 You can’t avoid mutations or fix the problem with side effects, but you can at least
work with IO operations as if they were immutable from the application point of view.
This can be done by lifting IO operations into monadic chains and letting the monad
drive the flow of data. To do so, you can use the IO monad.

class IO {
 constructor(effect) {

if (!_.isFunction(effect)) {
throw 'IO Usage: function required';

}
this.effect = effect;

 }

 static of(a) {
return new IO(() => a);

 }

 static from(fn) {
return new IO(fn);

 }

 map(fn) {
var self = this;
return new IO(function () {

return fn(self.effect());
});

 }

 chain(fn) {
return fn(this.effect());

 }

Listing 5.7 IO monad

Subsequent calls
to read may yield
different results.

Doesn’t return a
value, and clearly
causes mutations
to happen (unsafe
operation).

The IO constructor is initialized
with a read/write operation (like
reading or writing to the DOM).
This operation is also known as
the effect function.

Unit functions to lift
values and functions
into the IO monad

Map functor

143Functional error handling using monads
 run() {
return this.effect();

 }
}

This monad works differently than the others, because it wraps an effect function
instead of a value; remember, a function can be thought of as a lazy value, if you will,
waiting to be computed. With this monad, you can chain together any DOM opera-
tions to be executed in a single “pseudo” referentially transparent operation and
ensure that side effect–causing functions don’t run out of order or between calls.

 Before I show you this, let’s refactor read and write as manually curried functions:

const read = function (document, id) {
 return function () {

return document.querySelector(`\#${id}`).innerHTML;
 };
};

const write = function(document, id) {
 return function(val) {

return document.querySelector(`\#${id}`).innerHTML = val;
 };
};

And in order to avoid passing the document object around, make life easier and par-
tially apply it to these functions:

const readDom = _.partial(read, document);
const writeDom = _.partial(write, document);

With this change, both readDom and writeDom become chainable (and composable)
functions awaiting execution. You do this in order to chain these IO operations
together later. Consider a simple example that reads a student’s name from an HTML
element and changes it to start-case (capitalize the first letter of each word):

<div id="student-name">alonzo church</div>

const changeToStartCase =
 IO.from(readDom('student-name')).

map(_.startCase).
map(writeDom('student-name'));

Writing to the DOM, the last operation in the chain, isn’t pure. So what do you expect
the changeToStartCase output to be? The nice thing about using monads is that you
preserve the requirements imposed by pure functions. Just like any other monad, the
output from map is the monad itself, an instance of IO, which means at this stage noth-
ing has been executed yet. What you have here is a declarative description of an IO
operation. Finally, let’s run this code:

changeToStartCase.run();

Kicks off the lazily initialized
chain to perform the IO

You can map any
transformation
operation here.

144 CHAPTER 5 Design patterns against complexity
Inspecting the DOM, you’ll see this:

<div id="student-name">Alonzo Church</div>

There you have it: IO operations in a referentially transparent-ish way! The most
important benefit of the IO monad is that it clearly separates the pure and impure
parts. As you can see in the definition of changeToStartCase, the transformation
functions that map over the IO container are completely isolated from the logic of
reading and writing to the DOM. You can transform the contents of the HTML ele-
ment as needed. Also, because it all executes in one shot, you guarantee that noth-
ing else will happen between the read and write operations, which can lead to
unpredictable results.

 Monads are nothing more than chainable expressions or chainable computa-
tions. This allows you to build sequences that apply additional processing at each
step—like a conveyor belt in an assembly line. But chaining operations isn’t the only
modality where monads are used. Using monadic containers as return types creates
consistent, type-safe return values for functions and preserves referential transpar-
ency. Recall from chapter 4 that this satisfies the requirement for composing func-
tion chains and compositions.

5.4 Monadic chains and compositions
As you can see, monads bring the world of side effects under control, so you can use
them in composable structures. As you know from chapter 4, compositionality is the
trick to reducing complexity in your code. But in chapter 4, you hadn’t bothered to
check for invalid data: if findStudent had returned null, the entire program would
have failed, as shown in figure 5.10.

Fortunately, with little code, monads can also be made composable so that you can
enjoy their fluent, expressive error-handling mechanism to create safe composi-
tions. Wouldn’t it be nice if functions arranged in a pipeline gracefully sidestepped
null mines?

 As you can see in figure 5.11, the first step is to make sure the first function to be
executed wraps its result in a proper monad: both Maybe and Either work in this case.

�'444-44-4444' null Throws TypeError!findStudent append

Figure 5.10 Functions findStudent and append are being composed. Without the proper checks,
if the former produces a null return value, the latter will fail with a TypeError exception.

145Monadic chains and compositions

to
u

tly

r

n
As you know, there are two variations for combining functions in functional program-
ming: chain and compose. Recall that showStudent from the previous chapter had
three parts:

1 Normalize user input
2 Find the student record
3 Add the student information to the HTML page

You’re also adding input validation to the mix to make it even more complex. Hence,
this program has two points of failure: a validation error and an unsuccessful student-
fetch operation. You can refactor them to include the Either monad to supply appro-
priate error messages, as shown next.

// validLength :: Number, String -> Boolean
const validLength = (len, str) => str.length === len;

// checkLengthSsn :: String -> Either(String)
const checkLengthSsn = function (ssn) {
 return Either.of(ssn).filter(_.bind(validLength, undefined, 9))

.getOrElseThrow(`Input: ${ssn} is not a valid SSN number`);
};

// safeFindObject :: Store, string -> Either(Object)
const safeFindObject = R.curry(function (db, id) {
 return Either.fromNullable(find(db, id))

.getOrElseThrow(`Object not found with ID: ${id}`);
});

// finStudent :: String -> Either(Student)
const findStudent = safeFindObject(DB('students'));

// csv :: Array => String
const csv = arr => arr.join(',');

Listing 5.8 Refactoring functions to use Either

findStudent append'444-44-4444' null null

Skipped

Figure 5.11 Same two functions as in figure 5.10; but this time the null value travels in a monad
(Either or Maybe), which causes the rest of the functions in the pipeline to gracefully fail.

Instead of
lifting these
functions in
an Either, yo
can use the
monad direc
and provide
specific erro
messages
depending o
the error.

Refactored csv function
returns a string from
an array of values

146 CHAPTER 5 Design patterns against complexity
Because these functions are curried, you can partially evaluate them to create simpler
ones, as you did before, as well as add some helper logging functions:

const debugLog = _.partial(logger, 'console', 'basic',
'Monad Example', 'TRACE');

const errorLog = _.partial(logger, 'console', 'basic',
'Monad Example', 'ERROR');

const trace = R.curry((msg, val)=> debugLog(msg + ':' + val));

And that’s it! The monadic operations take care of the rest and ensure that the data
travels through the function calls at no additional cost. Let’s look at how you can use
Either and Maybe to add automatic error handling to showStudent.

const showStudent = (ssn) =>
 Maybe.fromNullable(ssn)

.map (cleanInput)

.chain(checkLengthSsn)

.chain(findStudent)

.map (R.props(['ssn', 'firstname', 'lastname']))

.map (csv)

.map (append('#student-info'));

Listing 5.9 shows the use of the chain method. This is nothing more than a shortcut
to avoid having to use join after map to flatten the layers resulting from combining
monad-returning functions. Like map, chain applies a function to the data without
wrapping the result back into the monad type.

 Also, notice how both monads interleave seamlessly. This is because both Either
and Maybe implement the same monadic interface. Now, calling

showStudent('444-44-4444').orElse(errorLog);

generates two results: if the student object is successfully found, it appends the student
information to the HTML as expected and returns:

Monad Example [INFO] Either.Right('444-44-4444, Alonzo,Church')

Otherwise, it skips the entire operation gracefully and uses the orElse clause:

Monad Example [ERROR] Student not found with ID: 444444444

Chaining isn’t the only pattern; you can easily introduce error-handling logic with
compose. To do this, you perform the simple object-oriented-to-functional transform
you’ve seen before to convert monad methods into functions that polymorphically

Listing 5.9 showStudent using monads for automatic error handling

Methods map and chain can be used to transform
the value in the monad. Map returns a monad; to
avoid nesting and having to flatten the structure,
weave map with chain to keep a single monad
level flowing through the calls.

Extracts the selected
properties from an
object as an array

147Monadic chains and compositions
work across any monad type (following from the Liskov Substitution Principle). In
particular, you can create generalized map and chain functions, shown in the follow-
ing listing.

// map :: (ObjectA -> ObjectB), Monad -> Monad[ObjectB]
const map = R.curry(function (f, container) {
 return container.map(f);
});

// chain :: (ObjectA -> ObjectB), M -> ObjectB
const chain = R.curry(function (f, container) {
 return container.chain(f);
});

You can use these functions to inject monads into a compose expression. The code
in listing 5.11 produces the same results as listing 5.9. Because monads control how
data flows from one expression to the next, this style of coding is also known as pro-
grammable commas, which is also point-free. In this case, a comma is used to delimit
one expression from another in the same way a semicolon traditionally delineates one
statement from the next in JavaScript. Also, using lots of trace statements lets you see
the data flowing through the operations (logging statements are useful for debug-
ging, as well).

const showStudent = R.compose(
R.tap(trace('Student added to HTML page'))
map(append('#student-info')),
R.tap(trace('Student info converted to CSV')),
map(csv),
map(R.props(['ssn', 'firstname', 'lastname'])),
R.tap(trace('Record fetched successfully!')),
chain(findStudent),
R.tap(trace('Input was valid')),
chain(checkLengthSsn),
lift(cleanInput));

Running the code prints the following log messages on the console:

Monad Example [TRACE] Input was valid:Either.Right(444444444)

Monad Example [TRACE] Record fetched successfully!: Either.Right(Person
[firstname: Alonzo| lastname: Church])

Monad Example [TRACE] Student converted to row: Either.Right(444-44-4444,
Alonzo, Church)

Monad Example [TRACE] Student added to roster: Either.Right(1)

Listing 5.10 General map and chain functions that work on any container

Listing 5.11 Monads as programmable commas

148 CHAPTER 5 Design patterns against complexity
Finally, let’s diagram this entire flow to clearly see what’s going on; see figure 5.12. Fig-
ure 5.13 shows the behavior of this same program in the event that findStudent is
unsuccessful.

Tracing through programs
Listing 5.11 demonstrates how easy it is to trace through functional code. Without
having to drill into the body of those functions, you can demarcate an entire program
with tracing statements that execute before and after function calls, which is incred-
ibly useful for troubleshooting and debugging. If this program were written in an
object-oriented style, you couldn’t possibly do this without having to modify the actual
functions or perhaps instrument them using aspect-oriented programming, which
isn’t a trivial endeavor. Functional programming gives you this for free!

SSN SSN SSN findStudent

studentString csvappend

cleanInput checkLengthSsn

Figure 5.12 Step-by-step flow of the showStudent function in the case where findStudent successfully
finds a student object by the provided SSN

cleanInputSSN SSN SSN findStudent

null

Left

null

Left

append

orElse
errorLog

Skipped

csv

Skipped

checkLengthSsn

Figure 5.13 The case of an unsuccessful findStudent as it affects the rest of the composition. Regardless of
the failure of any of the components in the pipeline, the program remains fault-tolerant and gracefully skips any
procedures that depended on the data.

149Monadic chains and compositions
You may be wondering if you’re finally done with showStudent. Not quite. From the
discussion of the IO monad, now you know you can improve the code that deals with
DOM reads and writes:

map(append('#student-info')),

Because append has automatic currying, it’ll work well with IO. All you need to do at
this point is lift the value from csv, extract its content by mapping the R.identity
function into IO using IO.of, and then proceed with chaining both operations:

const liftIO = function (val) {
 return IO.of(val);
};

This produces the following program.

const showStudent = R.compose(
 map(append('#student-info')),
 liftIO,
 map(csv),
 map(R.props(['ssn', 'firstname', 'lastname'])),
 chain(findStudent),
 chain(checkLengthSsn),
 lift(cleanInput));

Incorporating the IO monad allows you to achieve something truly amazing. You see,
running showStudent(ssn) now runs through all the logic of validating and fetching
the student record, as it should. Once this completes, the program waits on you to
write this data to the screen. Because you’ve lifted the data into an IO monad, you
need to call its run function for the data that’s lazily contained within it (in its closure)
to be flushed out to the screen:

showStudent(studentId).run(); //-> 444-44-4444, Alonzo, Church

A common pattern that occurs with IO is to tuck the impure operation toward the end
of the composition. This lets you build programs one step at a time, perform all the
necessary business logic, and finally deliver the data on a silver platter for the IO
monad to finish the job, declaratively and side effect–free.

 Just to show how functional programming makes code easier to reason about, for
the sake of comparison (apologies for reviving some ugly code), let’s bring back the
equivalent nonfunctional version of showStudent:

function showStudent(ssn) {
 if(ssn != null) {

ssn = ssn.replace(/^\s*|\-|\s*$/g, '');
if(ssn.length !== 9) {

throw new Error('Invalid Input');
}

Listing 5.12 Complete showStudent program

150 CHAPTER 5 Design patterns against complexity
let student = db.get(ssn);
if (student) {

document.querySelector(`#${elementId}`).innerHTML =
`${student.ssn},
${student.firstname},
${student.lastname}`;

}
else {

throw new Error('Student not found!');
}

 }
 else {

throw new Error('Invalid SSN!');
 }
}

Due to side effects, lack of modularity, and imperative error handling, this program is
difficult to use and test; we’ll examine this more closely in the next chapter. Whereas
composition controls program flow, monads control data flow. Both are possibly the
most important concepts in the functional programming ecosystem.

 This chapter completes part 2 of the book. Your developer toolbox is equipped
with all the functional concepts you need to take on real-world solutions.

5.5 Summary
■ Exception-throwing mechanisms in object-oriented code result in impure func-

tions that impose a great deal of responsibility on the caller to provide adequate
try-catch logic.

■ The pattern of value containerization is used to create side effect–free code by
wrapping possible mutations under a single referentially transparent process.

■ Use functors to map functions to containers in order to access and modify
objects in a side effect–free and immutable manner.

■ Monads are a functional programming design pattern used to reduce an appli-
cation’s complexity by orchestrating a secure flow of data through functions.

■ Resilient and robust function compositions interleave monadic types such as
Maybe, Either, and IO.

Part 3

Enhancing your
functional skills

Parts 1 and 2 of this book taught you about the tools you need to apply func-
tional programming to solve real-world scenarios. You learned new techniques
and design patterns, all targeted at eliminating side effects so you can write code
that’s modular, extensible, and easy to reason about. In this part of the book,
you’ll use this learning to tackle the challenges of unit testing JavaScript applica-
tions, optimizing your code under the functional umbrella, and handling the
complexities of dealing with asynchronous events and data.

 Chapter 6 focuses on unit testing imperative applications and why FP is inher-
ently testable and less complex. Achieving referential transparency also leads to
an automated testing modality called property-based testing.

 Chapter 7 explores the inner workings of JavaScript’s function context as
well as the performance considerations that must be taken into account when
using deeply nested function closures and recursion. To improve overall appli-
cation performance, you’ll learn about lazy evaluation, memoization, and tail-
call optimization.

 Finally, in chapter 8, you’ll learn more monadic design patterns to combat
the increasing complexity of applications. This chapter focuses specifically on
two frequent JavaScript tasks: fetching data asynchronously from a server or a
database using promises, and cutting down on traditional function callbacks of
event-driven programs by approaching them from a reactive mindset using RxJS.

152 PART 3 Enhancing your functional skills
 After reading through this entire book, you should be equipped to become suc-
cessful at applying functional programming techniques during your professional
endeavors.

Bulletproofing your code
Good fences make good neighbors

—Robert Frost, “Mending Wall”

Welcome to part 3 of this book. Having read parts 1 and 2, you’ll have noticed a
central theme: functional programming makes your code easier to understand,
read, and maintain. You can even say its declarative nature makes your code self-
documented.

 Now that you’ve written functional code, how do you prove that it works? In
other words, how do you ensure that it meets the specifications laid out by your cus-
tomers? The only way is to write code that tests whether the resulting behavior is as

This chapter covers
■ How functional programming affects program

testing
■ Identifying challenges of testing imperative

code
■ Testing functional code with QUnit
■ Exploring property-based testing with JSCheck
■ Measuring program complexity with Blanket
153

154 CHAPTER 6 Bulletproofing your code
expected. Thinking functionally has a deep impact on application-level code and,
through it, directly influences the way you design your tests.

 You create unit tests to ensure that code meets a problem specification and builds
fences around all possible boundary conditions that may cause it to fail. I assume
you’ve written unit tests before; you’ve likely experienced that testing imperative pro-
grams can be a daunting effort, especially in large code bases. Due to side effects,
imperative code is susceptible to errors originating from false assumptions about the
global state of the system. Likewise, tests can’t run independently of others, as they
should, making it difficult to guarantee consistent results regardless of the order in
which they’re called. This is unfortunate and is the main reason testing is often left
until the end or, in most cases, skipped.

 In this chapter, we’ll look at why functional code is by definition inherently test-
able, whereas in most other paradigms, you must intentionally design your code to
make it easy to test. Most of the best practices associated with proper testing—elimi-
nating external dependencies, making functions predictable, and others—are core
principles embedded in functional design. Pure, referentially transparent functions
have this quality built into them for free and lend themselves to a more advanced
method such as property-based testing. Before we begin, let’s take a moment to
understand the influence FP has on the different types of tests and focus on where it
will help you be the most productive: unit tests.

6.1 Functional programming’s influence on unit tests
Generally, there are three testing categories: unit tests, integration tests, and accep-
tance tests. The testing pyramid in figure 6.1 shows that the influence of FP on your
code is greater as you move from acceptance tests (top) to unit tests (bottom). This is
evident because functional programming is a software-development paradigm that
focuses on the design of functions and modules as well as the integration among its
constituent parts.

UI

Integration

Unit

Acceptance

The influence of
FP is greater

moving toward
the unit test

tier.

None: Acceptance tests are
agnostic to a software paradigm.

Some: FP can streamline the
integration of different modules
in your code.

Great: FP impacts the
lower layers of your
code base.

Figure 6.1 Because functional programming is a software paradigm with focus on code, its
influence mostly impacts the design of unit tests, with little effect on integration tests. It’s
completely agnostic to acceptance testing.

155Challenges of testing imperative programs
Although important, testing the user’s acceptance criteria with regard to look and
feel, usability, and navigability of your web application is distanced from the code
and thus has little or nothing to do with whether your program is written functionally
or imperatively. This task is better suited to test-automation frameworks. With regard
to integration tests, as you saw in chapter 4, FP cedes control of the orchestration of
the different components of your application to composition, which you know to work
without question. So part of the time spent in integration tests is given back to you for
free just by adopting FP as a paradigm.

 The real focus of functional programming is on functions—the units of modularity
in your code—and the interactions among them. The test-runner library of choice for
this book is the popular QUnit. I won’t cover setting up testing libraries; if you’ve set
up any unit test library before, QUnit will be simple to get up and running. See this
book’s appendix for more details.

 Here’s the basic structure of a single unit test:

QUnit.test('Test Find Person', function(assert) {
 const ssn = '444-44-4444';
 const p = findPerson(ssn);
 assert.equal(p.ssn, ssn);
});

The test code lives in a JavaScript file that’s not part of the main application code but
imports all the functions that will be tested. Unit testing imperative programs is
extremely challenging due to the presence of side effects and mutations. Let’s exam-
ine some of the downfalls of testing imperative code.

6.2 Challenges of testing imperative programs
Imperative tests suffer from the same challenges as imperative code. Because impera-
tive code is based on global state and mutations, rather than contained data flow and
joined computations, testing is a real challenge. One of the main principles to follow
when designing unit tests is isolation. A unit test should run as if in a vacuum and igno-
rant of any other data or tests around it; but side effects in the code severely limit the
extent to which you can test functions.

 Imperative code is

■ Difficult to identify and decompose into simple tasks
■ Dependent on shared resources that make test results inconsistent
■ Forced to a predefined order of evaluation

Let’s examine some of these challenges more closely.

6.2.1 Difficulty identifying and decomposing tasks

Unit tests are designed to test the smallest parts of your application. In procedural
programs, it’s much harder to identify the units of modularity because there’s no intui-
tive way to slice the different sections of a single, monolithic program that wasn’t

156 CHAPTER 6 Bulletproofing your code
designed with that mindset to begin with. In this case, the units are functions that
encapsulate your business logic. For example, recall the imperative version of show-
Student that you’ve been working on throughout the book. Figure 6.2 shows a good
attempt to slice it into its constituent parts.

As you can see, this program is made up of tightly coupled business logic that’s con-
cerned with different aspects of a program, all in a single monolithic function. But
there’s no real reason to couple data validation with fetching student records and
appending elements to the DOM; those can be separate testable business units that are
assembled via composition. In addition, as you learned in chapter 5, you should factor
out error-handling logic and allow monads to handle it.

Monads and error handling
In chapter 5, you learned about a few design patterns that you can apply to consoli-
date and remove error-handling code from your main functions while still keeping
them fault-tolerant. By using the monads Maybe and Either, you can write point-free
code that knows how to properly propagate errors through the components while mak-
ing sure your program remains responsive.

function showStudent(ssn) {

if(ssn !== null) {

ssn = ssn.replace(/^\s*|\-|\s*$/g, '');

if(ssn.length !== 9) {

throw new Error('Invalid input');

}

var student = db.get(ssn);

if (student !== null) {

var info =

`${student.ssn},

${student.firstname},

${student.lastname}`;

document.querySelector(`\#${elementId}`)

.innerHTML = info;

return info;

}

else {

throw new Error('Student not found!');

}

}

else {

return null;

}

}

1| Validation

2| Storage IO write

3| DOM IO

4| Error handling

Figure 6.2 The functional sections of the monolithic function showStudent. To simplify writing tests,
these sections should be split into separate functions that deal with validation, IO, and error handling.

157Challenges of testing imperative programs
In order to widen the testable scope of this function, you need to find ways to split it
into loosely coupled components that segregate the pure from the impure. Impure
code is difficult to test due to the presence of side effects that can occur when reading
and writing to external resources such as the DOM or external storage.

6.2.2 Dependency on shared resources leads to inconsistent results

In chapter 2, I talked about JavaScript’s unwieldy freedom to access globally shared
data. Testing programs with side effects requires extreme care and discipline because
you’re responsible for managing the state around the function under test. I’ve seen
too many cases where adding a new test to a working test suite causes other unrelated
tests to inadvertently fail. Why is this? In order for tests to be reliable, they must be
self-contained or independent from the rest, which means each unit test essentially
runs in its own sandbox, leaving the system in exactly the same state as it was found.
Tests that break this rule can never consistently produce the same outcomes.

 I’ll use a simple example to illustrate. Recall the imperative increment function:

var counter = 0; // (global)

function increment() {
 return ++counter;
}

You can write a simple unit test to ensure that incrementing a number from 0 equals 1;
this result should hold whether you run it once or 100 times. But because the function
modifies and reads from external data (see figure 6.3), this isn’t the case.

The second iteration fails because the first modified the external counter variable to 1,
preempting the global context for the second run of the same code and causing it to fail
in its assertion. By the same token, functions with side effects are also prone to bugs
originating from order of evaluation. Let’s examine this next.

QUnit.test("Increment with zero", function (assert) {

assert.equal(increment(), 1)

});

QUnit.test("Increment with zero (again)", function (assert) {

assert.equal(increment(), 1)

});

�

�

Repeating
same test

Figure 6.3 Repeating a unit test for the imperative increment function is impossible due to the
function’s dependency on the external counter variable.

158 CHAPTER 6 Bulletproofing your code
6.2.3 Predefined order of execution

Along the same lines as consistency, unit tests should be designed to be commutative,
which means changing the order in which they run shouldn’t affect their outcome.
For the same reasons as before, this principle doesn’t work with impure functions. To
work around this problem, unit testing libraries like QUnit contain out-of-the-box
mechanisms to set up and tear down the global testing environment in order for sub-
sequent tests to run; but the setup of one test may be completely different than
another, so you’re forced to set up preconditions at the beginning of each test. This
also implies that for each test, you’re responsible for identifying all the side effects
(external dependencies) of the code under test.

 To illustrate, let’s create simple tests around increment to verify its behavior
against negative numbers, zero, and positive numbers (see figure 6.4). In the first run
(left), all tests pass. Shuffling the order of the tests (right), with no additional
changes, causes the second test to fail. This is because tests with side effects run based
on the assumption that you’ve adequately set up the surrounding state.

As you can see from this simple exercise, even if you manage to successfully run multi-
ple unit tests for a particular function by manipulating the global context within each
test, you can’t guarantee they’ll work if you move them around. A simple shift in
sequence is enough to invalidate all your assertions.

 Thinking functionally can also help you build reliable test suites. And if your code
is written in a functional style, you’ll get this for free. Instead of hopelessly shoehorn-
ing functional principles into your test code, why not write functionally from the
beginning and recover the invested time in the test phase? Let’s look at the benefits of
functional code for testing.

QUnit.test("Increment with negative", function (assert) {

counter = -10;

assert.equal(increment(), -9)

});

QUnit.test("Increment with zero", function (assert) {

assert.equal(increment(), 1)

});

QUnit.test("Increment with positive", function (assert) {

counter = 10;

assert.equal(increment(), 11)

});

QUnit.test("Increment with zero", function (assert) {

assert.equal(increment(), 1)

});

QUnit.test("Increment with negative", function (assert) {

counter = -10;

assert.equal(increment(), -9)
});

QUnit.test("Increment with positive", function (assert) {

counter = 10;

assert.equal(increment(), 11)

});

�

�

� �

�

�

Simple

shuffle

Preconditions

Incorrectly assuming a preexisting state causes the failure.

Figure 6.4 Falsely making assumptions about the global state of the system causes simple tests to fail. The left
side shows that all tests executed perfectly, because each test correctly prepared its surrounding state before
executing. But shuffling the tests (right) invalidates all assumptions about the state.

159Testing functional code
6.3 Testing functional code
Whether you’re testing imperative or functional code, many of the best practices sur-
rounding the development of unit tests, such as isolation, predictability, and repeat-
ability, are reciprocated in FP. Because every function clearly defines all of its input
parameters, it’s straightforward to supply multiple sets of boundary conditions to per-
form a thorough examination of all paths in your code. With respect to side effects,
recall from previous chapters that all of the functions are simple and clearly defined,
and all of the impure code can be safely wrapped in monads.

 In addition, the impurity found in manual looping constructs has also been
addressed by ceding control to higher-order operations like map, reduce, filter, and
recursion, as well as using functional libraries that are side effect–free. These tech-
niques and design patterns allow you to effectively abstract the complexity of your
code so that you can test more productively and worry only about the main pieces of
your business logic. This section discusses benefits of testing functional code, includ-
ing the following:

■ Treating a function as a black box
■ Focusing on business logic instead of control flow
■ Separating the pure from the impure with monadic isolation
■ Mocking external dependencies

6.3.1 Treating a function as a black box

Functional programming encourages you to write independent functions that know
how to work on a set of inputs in a loosely coupled manner, regardless of the rest of
the application. These functions are also side effect–free and referentially transpar-
ent, which results in predictable test runs whose outcome is the same regardless of
how many times they’re invoked and in what order. This allows you to treat a function
as a black box and only focus on the inputs that assert the corresponding outputs.
Testing a function like showStudent, for example, requires the same level of effort as
testing the functional increment function shown in figure 6.5.

QUnit.test("Increment with zero", function (assert) {

assert.equal(increment(0), 1)

});

QUnit.test("Increment with zero (again)", function (assert) {

assert.equal(increment(0), 1)

});

QUnit.test("Increment with ten", function (assert) {

assert.equal(increment(10), 11)

});

QUnit.test("Increment with negative one", function (assert) {

assert.equal(increment(-1), 0)

});

�

�

�

�

QUnit.test("Increment with ten", function (assert) {

assert.equal(increment(10), 11)

});

QUnit.test("Increment with zero", function (assert) {

assert.equal(increment(0), 1)

});

QUnit.test("Increment with negative one", function (assert) {

assert.equal(increment(-1), 0)

});

QUnit.test("Increment with zero (again)", function (assert) {

assert.equal(increment(0), 1)

});

�

�

�

�

Can be run in any order.

Figure 6.5 Tests against the functional increment function, which can be repeated or run in a different order
without altering their outcome

160 CHAPTER 6 Bulletproofing your code
Recall from chapter 1 that declaring all function parameters explicitly in the function
signature makes functions more configurable. This simplifies testing significantly
because nothing is hidden from the caller at the moment of supplying proper argu-
ments and creating expectations of what the functions are supposed to do. Simple
functions typically declare one or two parameters that are put together via composi-
tion to create richer functions.

6.3.2 Focusing on business logic instead of control flow

The theme of decomposing tasks into simple functions has been a pattern throughout
this book. I mentioned in chapter 1 that when writing functional code, you’ll spend
most of your time decomposing your problem into smaller parts. This is the challeng-
ing step; the rest of the time is spent gluing them together. Fortunately, libraries like
Lodash and Ramda fill in the functional gaps in the JavaScript by providing glue
points with functions like curry and compose. Together with the functional combina-
tors you learned about in section 4.6, the upfront time spent designing and decom-
posing is given back to you in the testing phase. Your only responsibility is to test the
individual functions that make up the main logic of your program. As an example,
let’s begin writing some tests for the functional version of computeAverageGrade
(here’s the code again for quick reference).

const fork = function(join, func1, func2){
 return function(val) {

return join(func1(val), func2(val));
 };
};

const toLetterGrade = function (grade) {
 if (grade >= 90) return 'A';
 if (grade >= 80) return 'B';
 if (grade >= 70) return 'C';
 if (grade >= 60) return 'D';
 return 'F';
};

const computeAverageGrade =
R.compose(toLetterGrade, fork (R.divide, R.sum, R.length));

QUnit.test('Compute Average Grade', function(assert) {

 assert.equal(computeAverageGrade([80, 90, 100]), 'A');
});

This program uses many simple functions, such as Ramda’s R.divide, R.sum, and
R.length, combined using a custom functional combinator fork, the result of which
is composed with toLetterGrade. The functions provided in Ramda have already
been thoroughly tested for you, so there’s no need to reinvent the wheel. This is the

Listing 6.1 Testing the computeAverageGrade program

161Testing functional code
benefit of using functional libraries whenever possible. All that’s left for you to do is
write a unit test for toLetterGrade:

QUnit.test('Compute Average Grade: toLetterGrade', function (assert) {

 assert.equal(toLetterGrade(90), 'A');
 assert.equal(toLetterGrade(200),'A');
 assert.equal(toLetterGrade(80), 'B');
 assert.equal(toLetterGrade(89), 'B');
 assert.equal(toLetterGrade(70), 'C');
 assert.equal(toLetterGrade(60), 'D');
 assert.equal(toLetterGrade(59), 'F');
 assert.equal(toLetterGrade(-10),'F');
});

Because toLetterGrade is pure, you can run it several times against different inputs to
test many of its boundary conditions. Because it’s referentially transparent, you can
also shift the order of these test cases without altering the result of the test. Later,
you’ll learn an automated way of generating proper sample input; but for now, you’ll
do this manually to see that the function works correctly against a comprehensive set
of input. Now that all the individual pieces of the program have been tested, you can
safely assume the program as a whole works, because it’s driven by the power of com-
position and functional combinators.

 Along the same lines, what about fork? Functional combinators don’t require
much testing, because they contain no business logic other than orchestrating func-
tion calls in your application’s control flow. Recall from section 4.6 that combinators
are useful for substituting standard control artifacts like if-else (alternation) and
loops (sequence).

 Some libraries implement combinators out of the box, like R.tap; but when using
custom ones (like fork), you can test them independent of the rest of the application
and apart from the business logic. For the sake of completeness, let’s write a quick test
for fork that showcases another good use of R.identity:

QUnit.test('Functional Combinator: fork', function (assert) {

 const timesTwo = fork((x) => x + x, R.identity, R.identity);
 assert.equal(timesTwo(1), 2);
 assert.equal(timesTwo(2), 4);
});

Again, testing with a simple function is sufficient, because combinators are completely
agnostic when it comes to the arguments provided. Using functional libraries, compo-
sition, and combinators makes development and testing trivial; but things can get
messy when you’re dealing with impure behavior.

6.3.3 Separating the pure from the impure with monadic isolation

In previous chapters, you learned that most programs have pure and impure parts.
This is especially true in client-side JavaScript, because interacting with the DOM is

162 CHAPTER 6 Bulletproofing your code
what the language was meant for. On the server, you’ll have other requirements such
as reading from a database or file. You learned how to use composition to combine
the pure and impure functions that make up your programs. But this still made them
impure; you relied on the IO monad to push the line of purity even further away so
that you could obtain referential transparency from the application’s perspective,
making it more declarative and easier to reason about. In addition to IO, you used
other monads like Maybe and Either to create a surefire way to run programs that are
still responsive in the event of failure. With all these techniques, you can control most
side effects. But when your JavaScript code needs to read and write to the DOM, how
can you guarantee that your tests remain isolated and repeatable?

 Recall that the nonfunctional version of showStudent makes no effort to separate
its impure parts: it’s all mixed together, so it will run as a whole on each and every test.
This is utterly inefficient and unproductive because you would need to run the entire
program every time even when you only wanted to validate, say, that db.get(ssn)
worked with different combinations of Social Security numbers. Another disadvantage
is that you can’t test it thoroughly because all statements are tightly coupled. For
instance, the first block of code will exit the function early with an exception and pre-
vent you from testing db.get(ssn) against invalid input.

 On the other hand, functional programming is aimed at reducing the involvement
of operations that cause side effects (like IO) to minimal functions (simple reads and
writes) so that you can increase the testable scope of your application logic while
decoupling the boundaries of IO testing you aren’t responsible for. Let’s revisit the
functional version of showStudent:

const showStudent = R.compose(
 map(append('#student-info')),
 liftIO,
 map(csv),
 map(R.props(['ssn', 'firstname', 'lastname'])),
 chain(findStudent),
 chain(checkLengthSsn),
 lift(cleanInput));

Looking closely at both programs, you can see how the functional version is essentially
taking the imperative version apart and bolting it together with composition and
monads. As a result, you dramatically increase the testable scope of showStudent and
clearly recognize and isolate the pure functions from the impure (see figure 6.6).

 Let’s analyze the testability of the components of showStudent. Of the five func-
tions, only three can be tested reliably: cleanInput, checkLengthSsn, and csv. Although
findStudent has side effects when reading data from external resources, you’ll see
ways to get around this in a later section. The remaining function, append, has no real
business logic because it’s been reduced to appending to the DOM whatever data is
given to it. It’s not in your best interest, and it isn’t the best use of your time, to test
DOM APIs; leave that to browser manufacturers. With functional programming, you
can take a hard-to-test program and split it into highly testable pieces.

163Testing functional code
Now, let’s compare this against the nonfunctional, tightly coupled code in listing 6.2. In
the functional version, you’re able to test roughly 90% of the program reliably,
whereas the imperative version has the same fate as the procedural increment func-
tion—it fails on subsequent or out-of-order runs.

 The following listing shows the unit tests for each testable component in figure 6.6.

QUnit.test('showStudent: cleanInput', function (assert) {

 const input = ['', '-44-44-', '44444', ' 4 ', ' 4-4 '];
 const assertions = ['', '4444', '44444', '4', '44'];

 assert.expect(input.length);
 input.forEach(function (val, key) {

assert.equal(cleanInput(val), assertions[key]);
 });
});

QUnit.test('showStudent: checkLengthSsn', function (assert) {

 assert.ok(checkLengthSsn('444444444').isRight);
 assert.ok(checkLengthSsn('').isLeft);
 assert.ok(checkLengthSsn('44444444').isLeft);
 assert.equal(checkLengthSsn('444444444').chain(R.length), 9);
});

QUnit.test('showStudent: csv', function (assert) {

 assert.equal(csv(['']), '');
 assert.equal(csv(['Alonzo']), 'Alonzo');
 assert.equal(csv(['Alonzo', 'Church']), 'Alonzo,Church');
 assert.equal(csv(['Alonzo', '', 'Church']), 'Alonzo,,Church,');
});

Listing 6.2 Unit testing pure components of showStudent

showStudent

cleanInput

checkLengthSsn

findStudent

csv

append

� �

�

Impure: can’t be tested
reliably

�

Impure: can be tested by
other means

Pure Pure

Figure 6.6 Identifying the testable areas of the showStudent program. The components that
perform IO are impure and can’t be tested reliably because they contain side effects. Other than having
impure parts, the scope of the entire program remains highly testable.

Using inputs of
varying lengths
and containing

whitespace

Using Either.isLeft or Either.isRight
to make assertions about the

contents of the monad

164 CHAPTER 6 Bulletproofing your code
Because these functions are isolated and thoroughly tested on their own (again, later
I’ll show you an automated mechanism for generating input data), you can safely
refactor them without fear of breaking things in other places.

 You have one last function to test: findStudent. This function originates from the
impure safeFindObject, which queries an external object storage to look up student
records. But the side effects in this function are manageable by using a technique
called mock objects.

6.3.4 Mocking external dependencies

Mocking is a popular testing technique used to simulate the behavior of a function’s
external dependencies in a controlled, assertable manner, so it’s good for dealing with
some types of side effects. Mock objects will cause your test to fail if its expectations
aren’t met. They’re like programmable dummy methods (or stubs) that you can use
to define up front the expected behavior of an object that interact with your func-
tions. In this case, mocking the call to the DB object gives you complete control over
this external resource in order to create more predictable and consistent tests. For
this task, you’ll use a QUnit mock plug-in called Sinon.JS (see the appendix for details
on how to set up this plug-in).

 Sinon.JS enhances the test environment with a sinon object used to create mock
versions of any object, all accessible in a mock context. In this case, you populate the
context with the DB object, which will serve as the acting stub for this dependency:

const studentDb = DB('students');
const mockContext = sinon.mock(studentDb);

Using this mock context, you can set many expectations for the behavior of the
mocked object to assert things like how many times it’s called, what arguments it
receives, as well as what its return value should be. To validate the behavior of the
Either monad that wraps the return value of the safeFindObject, you’ll create two
unit tests: one that exercises the Either.Right type and another that triggers an
Either.Left. You’ll take advantage of the curried nature of findStudent that lets you
easily inject any storage implementation to be used to perform the lookups, similar to
what you did in chapter 4 with the factory method pattern. As you’ve seen in the code
listings, this function invokes the get method on the storage object; now that you have
full control of this object via the mock context, you can easily control the desired
return value, as shown next.

var studentStore, mockContext;

QUnit.module('CH06',
{
 beforeEach: function() {
 studentDb = DB('students');

Listing 6.3 Mocking the external dependency of findStudent

Prepares the
mock context for
all unit tests

165Testing functional code
 mockContext = sinon.mock(studentDb);
 },
 afterEach: function() {
 mockContext.verify();
 mockContext.restore();
 }
});

QUnit.test(showStudent: findStudent returning null',
 function (assert) {

 mockContext.expects('get').once().returns(null);

 const findStudent = safefetchRecord(studentStore);

 assert.ok(findStudent('xxx-xx-xxxx').isLeft);
});

QUnit.test('showStudent: findStudent returning valid object',
 function (assert) {

 mockContext.expects('get').once().returns(
new Student('Alonzo', 'Church', 'Princeton').

setSsn('444-44-4444'));

 const findStudent = safefetchRecord(studentStore);

 assert.ok(findStudent('444-44-4444').isRight);
});

Figure 6.7 shows the result of running the tests with QUnit and Sinon.JS for the test-
able parts of showStudent.

Cleans up after
each test

Verifies the assertions
set forth in the mock
configuration On the first unit test,

the mock object
simulates a call to
its query method
(strictly once) that
returns null.

Asserting the returned
value is wrapped in an
Either.Left

On the second unit test, the
mock object simulates a call
to query with a valid result.

Asserting the valid
response is wrapped
inside an Either.Right

Figure 6.7 Execution of all unit tests for the showStudent program. Tests 3 and 4 use
QUnit with Sinon.JS because they require mocked dependencies to simulate the
functionality of fetching a student record.

166 CHAPTER 6 Bulletproofing your code
The fact that functional code is orders of magnitude more testable than imperative
code boils down to one principle: referential transparency. The essence of an asser-
tion is verifying that referential transparency always holds:

assert.equal(computeAverageGrade([80, 90, 100]), 'A');

There’s a lot more to referential transparency than meets the eye. This concept can
extend into other realms of software development, such as program specifications. After
all, the sole purpose of tests is to verify that the specifications of the system are met.

6.4 Capturing specifications with property-based testing
Unit tests can be used as artifacts to document and capture the runtime specification
of a function. In the case of computeAverageGrade, for example

QUnit.test('Compute Average Grade', function (assert) {
 assert.equal(computeAverageGrade([80, 90, 100]),'A');
 assert.equal(computeAverageGrade([80, 85, 89]), 'B');
 assert.equal(computeAverageGrade([70, 75, 79]), 'C');
 assert.equal(computeAverageGrade([60, 65, 69]), 'D');
 assert.equal(computeAverageGrade([50, 55, 59]), 'F');
 assert.equal(computeAverageGrade([-10]), 'F');
});

you can come up with a simple document that states the following:

■ “If the student’s average is 90 or above, the student is awarded an A.”
■ “If the student’s average is between 80 and 89, the student is awarded a B.”
■ … And so on

Natural language is often used as a means to capture the requirements a system shall
fulfill; but natural languages express meaning in a certain context, often not known
by all parties, and this generates ambiguity when you try to translate requirements to
code. This is why you have to constantly bug product owners or team leads to clarify
ambiguities present in task specifications. One of the main causes of ambiguity is a
result of adopting an imperative style of documentation when using if-then cases: if
case A, then the system should do B. The downside of this approach is that it doesn’t
describe the totality of the task to account for all boundary conditions. What if case A
doesn’t occur? What is the system expected to do then?

 Good specifications shouldn’t be case-based; they should be generic and universal.
Look at the slight difference in wording in these two statements:

■ “If the student’s average is 90 or above, the student is awarded an A.”
■ “Only an average of 90 or above will award the student an A.”

By removing the imperative-case clauses, the second statement is much more com-
plete. Not only does it express what happens when the student reaches 90 or above,
but it also places the restriction that no other numerical range will result in an A.
You can derive from the second statement that, at the least, any other computed

167Capturing specifications with property-based testing
average won’t result in the student being awarded an A, which you couldn’t intuit
from the first.

 Universal requirements are much easier to work with, because they aren’t depen-
dent on the status of the system at any point in time. For this reason, like unit tests,
good specifications don’t have side effects or make assumptions about their surround-
ing context.

 Referentially transparent specifications increase our understanding of what func-
tions are supposed to do and give us a clear picture of the input conditions they must
satisfy. Because referentially transparent functions are consistent and have clear input
parameters, they lend themselves to being easily tested with automated mechanisms
that can push them to the limit. This brings us into a much more compelling testing
modality called property-based testing. A property-based test makes a statement about
what the output of a function should be when executed against a definite set of inputs.
The canonical framework or reference implementation is Haskell’s QuickCheck.

By the same token, JavaScript emulates QuickCheck with a library called JSCheck (see
the appendix for setup information), by none other than Douglas Crockford,1 author
of JavaScript: The Good Parts (O’Reilly, 2008). JSCheck can be used to create a technical
response to a matching referentially transparent specification of a function or pro-
gram. Hence, proving the properties of a function is done by generating a large num-
ber of random test cases aimed at rigorously exercising all possible output paths of
your function.

 Also, property-based tests control and manage the evolution of your program as it’s
being refactored to ensure that new code doesn’t introduce unintentional bugs into
the system. The main advantage of using a tool like JSCheck is that its algorithm gener-
ates abnormal datasets to test with. Some of the edge cases it generates would most
likely be overlooked if you had to manually write them.

 The JSCheck module is nicely encapsulated into a global JSC object:

JSC.claim(name, predicate, specifiers, classifier)

QuickCheck: Property-based test for Haskell
QuickCheck is a Haskell library for randomized property-based testing of a program’s
specification or properties. You design a specification of a pure program in the form
of properties the program should fulfill, and QuickCheck generates a large permuta-
tion of test cases against your program and produces a report. You can find more
information at https://hackage.haskell.org/package/QuickCheck.

1 Douglas Crockford is a popular computer programmer, writer, and speaker best known for his ongoing
involvement in the evolution of the JavaScript language, popularizing JSON, and creating several JavaScript
libraries like JSLint, JSMin, and JSCheck, among others. He’s also the author of the must-read JavaScript: The
Good Parts.

https://hackage.haskell.org/package/QuickCheck

168 CHAPTER 6 Bulletproofing your code

e
At the heart of this library is the creation of claims and verdicts. A claim is made up of
the following:

■ Name—Description of the claim (similar to QUnit’s test description).
■ Predicate—Function that returns a verdict of true when the claim is satisfied or

false otherwise.
■ Specifiers—Array describing the type of the input parameters and the specifica-

tion with which to generate random datasets.
■ Classifier (optional)—Function associated with each test case that can be used to

reject non-applicable cases

Claims are passed into JSCheck.check to run random test cases. This library wraps
creating a claim and feeding it into the engine in a single call to JSCheck.test, so
you’ll use this shortcut method in the example tests. Let’s look at an example of writ-
ing a simple JSCheck specification for computeAverageGrade that captures the follow-
ing specification: “Only an average of 90 or above will award the student an A.”

JSC.clear();
JSC.on_report((str) => console.log(str));

JSC.test(
 'Compute Average Grade',
 function (verdict, grades, grade) {

return verdict(computeAverageGrade(grades) === grade);
 },
 [

JSC.array(JSC.integer(20), JSC.number(90,100)),
'A'

],
 function (grades, grade) {

return 'Testing for an ' + grade + ' on grades: ' + grades;
 }
);

As you can see in listing 6.5, you use declarative specifiers to capture the properties of
this program:

■ JSC.array—Describes that the function expects inputs of Array type.
■ JSC.integer(20)—Indicates the maximum length this function is expected to

work with. In this case, it’s arbitrary, so any number from 1 to 20 will suffice.

Listing 6.4 Property-based test for computeAverageGrade

I always like to start with
JSC.clear to initialize and
start a fresh testing context.

Name
of the
claim

Passes the predicate
function the verdict
object that defines th
condition to verify

Signature or specifier array describing
the contract for generating averages
that deserve an A

Classifier function runs on each
test, so you can use it to

append data to the report

169Capturing specifications with property-based testing
■ JSC.number(90, 100)—Describes the types of elements in the input array. In
this case, they’re numeric (including integers and floating-point numbers) in
the range from 90 to 100.

The predicate function is a bit tricky to understand. The predicate returns a true
verdict when a claim holds, but what happens in the body of the predicate is for you
to determine depending on your specific program and what you want it to verify. In
addition to the verdict function used to announce the result of the test case, you’re
also given the generated random input and the expected output. In this case, the
result you want to announce is the check to validate that computeAverageGrade
returns the expected grade: A. This example uses a few specifiers, but there are
many more you can read about on the project’s website, and you can also create
your own.

 Now that you understand the main pieces of the program, let’s go ahead and run
it. The report can be lengthy, because JSCheck will generate by default 100 random
test cases based on the specification provided. I’ve trimmed it, but you can still follow
what’s happening:

Compute Average Grade: 100 classifications, 100 cases tested, 100 pass

Testing for an A on grades:
 90.042,98.828,99.359,90.309,99.175,95.569,97.101,92.24 pass 1
Testing for an A on grades:
 90.084,93.199, pass 1

// and so on 98 more times

Total pass 100, fail 0

JSCheck programs are self-documented; you can easily describe the contract for
your function’s inputs and outputs to a level regular unit tests can’t. You can also
see the significant level of detail that a JSCheck report contains. JSCheck programs
can run as standalone scripts or embedded into QUnit tests; that way, they can be
included as part of your test suites. The interaction between these libraries is shown
in figure 6.8.

 In the next example, you’ll use JSCheck to test the checkLengthSsn program,
which has the following specification:

■ A valid Social Security number must satisfy these conditions:
– Contains no spaces
– Contains no dashes
– Is nine characters long
– Follows the format outlined by ssa.gov, composed of three parts:

1 The first set of three digits is called the Area Number.
2 The second set of two digits is called the Group Number.
3 The final set of four digits is called the Serial Number.

170 CHAPTER 6 Bulletproofing your code
The following listing shows the code; then I explain the relevant parts.

QUnit.test('JSCheck Custom Specifier for SSN', function (assert) {
 JSC.clear();

 JSC.on_report((report) trace('Report'+ str));
JSC.on_pass((object) => assert.ok(object.pass));

 JSC.on_fail((object) =>
assert.ok(object.pass || object.args.length === 9,

'Test failed for: ' + object.args));

JSC.test(
'Check Length SSN',
function (verdict, ssn) {

return verdict(checkLengthSsn(ssn));
},
[

JSC.SSN(JSC.integer(100, 999), JSC.integer(10, 99),
JSC.integer(1000,9999))

],
function (ssn) {

return 'Testing Custom SSN: ' + ssn;
}

);
)};

Listing 6.5 JSCheck test for checkLengthSsn

QUnit JSCheck

Function under
test

on_pass on_fail

verdict

Specification+

assert

contains

A verdict executes the function under test
with input generated from the specification.

JSCheck status functions
make QUnit assertions.

Figure 6.8 The integration of the main components: JSCheck and QUnit. A QUnit test
encapsulates a JSCheck test specification. The specification and the function being tested
are supplied to the verdict function, which is run through the JSCheck engine to invoke
the pass/fail callbacks. These callbacks can be used to trigger QUnit assertions.

Uses JSC.on_fail to
ensure that the test fails
on arguments with
length not equal to 9

Because the function is
Boolean, you can feed the
result of the validation in
to the verdict.

Uses a custom specifier JSC.SSN
(defined in the text), composed of
JSC.integer specifiers. JSC.integer
picks a random number in the
specified range.

171Capturing specifications with property-based testing
This program joins the forces of JSCheck and QUnit through the JSC.on_fail and
JSC.on_pass functions, which report to QUnit about any assertions that are fulfilled
or that violate the specification provided. Because the specifier

JSC.SSN(JSC.integer(100, 999), JSC.integer(10, 99), JSC.integer(1000,9999))

describes the contract for valid SSNs, this program is expected to always output the
correct results for any combination of SSN of the form XXX-XX-XXXX:

Check Length SSN:
100 classifications, 100 cases tested, 100 pass

Testing Custom SSN: 121-76-4808 pass 1
Testing Custom SSN: 122-87-7833 pass 1
Testing Custom SSN: 134-44-6044 pass 1
Testing Custom SSN: 139-47-6224 pass 1
...
Testing Custom SSN: 992-52-3288 pass 1
Testing Custom SSN: 995-12-1487 pass 1
Testing Custom SSN: 998-46-2523 pass 1

Total pass 100

Nothing out of the ordinary here. But you can tweak the specification to also include
invalid input with a three-digit Group Number and see how the program behaves:

JSC.SSN(JSC.integer(100, 999),JSC.integer(10, 999),JSC.integer(1000,9999))

Running QUnit with JSCheck flags failures as expected. Figure 6.9 shows the output of
a single failure, for brevity.

Where did JSC.SSN come from? JSCheck specifiers behave just like functional combi-
nators that can be composed to create more-specialized specifiers. This case uses a
custom JSC.SSN made from the combination of three JSC.integer specifiers describ-
ing the properties of each SSN group, as shown next.

Figure 6.9 A failure detected as a result of
an invalid property check with QUnit. When
you randomize the input to include invalid
inputs, the JSCheck algorithm has enough
entropy that 89 of 90 tests fail.

172 CHAPTER 6 Bulletproofing your code
/**
* Produces a valid social security string (with dashes)
* @param param1 Area Number -> JSC.integer(100, 999)
* @param param2 Group Number -> JSC.integer(10, 99)
* @param param3 Serial Number -> JSC.integer(1000,9999)
* @returns {Function} Specifier function

*/
JSC.SSN = function (param1, param2, param3) {
 return function generator() {

const part1 = typeof param1 === 'function'
? param1(): param1;

const part2 = typeof param2 === 'function'
? param2(): param2;

const part3 = typeof param3 === 'function'
? param3(): param3;

return [part1 , part2, part3].join('-');
 };
};

JSCheck works only with pure programs, which means you can’t test the showStudent
program entirely, but you can use it to test each component in isolation. I leave that to
you as an exercise. Property-based testing is compelling because it exercises functions
to the limit. Its best quality, in my opinion, is that it can be used to verify whether code
is indeed referentially transparent, because it’s expected to work consistently against
the same contract and verdict. But why submit your code to such a heavy procedure?
The answer is simple: to make your tests effective.

6.5 Measuring effectiveness through code coverage
Measuring a unit test’s effectiveness is an arduous task if not done with the proper
tools in place, because it involves studying the test’s code coverage through the func-
tions under test. Getting coverage information involves traversing all unique paths
belonging to a program’s control flow; one way to achieve this is by studying the flow
of code against a function’s boundary conditions.

 Certainly, code coverage alone isn’t an indicator of quality, but it does describe the
degree to which your functions are tested, which correlates to better quality. Would you
want code that’s never seen the light of day deployed to production? I didn’t think so.

 Code-coverage analysis can find areas in your code that haven’t been tested, allow-
ing you to create additional tests to uncover them. Normally, this includes code for
error handling that you let slip through the cracks and forget to come back to. You
can use code coverage to measure the percentage of lines of code that are executed
when invoking a program via unit tests. To compute this information, you can use a
library called Blanket.js, which is a code-coverage tool for JavaScript. It’s designed to

Listing 6.6 Custom JSC.SSN specifier

Added as part of the
JSC object so the code
looks consistent

Each part of the SSN
number is made up of
either a constant or a
function that JSCheck uses
to inject random inputs.

All three data points are
combined into a valid
SSN syntax.

173Measuring effectiveness through code coverage
complement your existing JavaScript unit tests with code-coverage statistics. It works in
three phases:

1 Load source files
2 Instrument the code by adding tracker lines
3 Connect the hooks in the test runner to output coverage details

Blanket collects coverage information with the help of an instrumentation phase
during which it captures meta-information regarding statement execution, which
you can display nicely in a QUnit report. Details for setting up Blanket can be found
in the appendix. You can instrument any JavaScript module or program via the cus-
tom data-covered attribute in the script include line. By analyzing the statement-
coverage percentage, you can see that functional code is much more testable than
imperative code.

6.5.1 Measuring the effectiveness of testing functional code

Throughout this chapter, you’ve seen that functional programs are more testable due
to the ease with which tasks can be broken apart to become atomic, verifiable units.
But don’t take my word for it; you can measure it empirically by performing a state-
ment-by-statement percentage-coverage analysis on the showStudent program. First,
let’s look at the simplest test case: a positive test.

MEASURING EFFECTIVENESS OF IMPERATIVE AND FUNCTIONAL CODE WITH VALID INPUTS

First let’s look at code-coverage statistics against a successful run of the imperative ver-
sion of showStudent, shown in listing 6.2. Using Blanket with QUnit, mark this pro-
gram to be instrumented:

<script src="imperative-show-student-program.js" data-cover></script>

Now, running the following test

QUnit.test('Imperative showStudent with valid user', function (assert) {
 const result = showStudent('444-44-4444');
 assert.equal(result, '444-44-4444, Alonzo, Church');
});

produces an 80% total statement-coverage percentage, as shown in the QUnit/Blan-
ket output in figure 6.10.

 This shouldn’t surprise you, because the error-handling code was all skipped. For
imperative programs, 75–80% code coverage is considered to be very good. What you
can take from this run is that 80% is the best coverage you can get with a single unit
test execution. On the other hand, let’s instrument and run a positive test against the
functional version:

<script src="functional-show-student-program.js" data-cover></script>

174 CHAPTER 6 Bulletproofing your code
Again, running the “happy path” test runs the program with a valid SSN, but this time
producing a whopping figure of 100% coverage (see figure 6.11)!

But wait: if the input was valid, why didn’t it skip the error-handling logic? This is the
work of monads in the code, which can propagate the concept of an empty value, or
nothingness (in the form of an Either.Left or a Maybe.Nothing) seamlessly through-
out the entire program; thus, every function is run, yet logic encapsulated in mapping
functions is skipped.

 It’s remarkable how functional code is so robust and flexible. Now, let’s run a neg-
ative test with invalid input.

Figure 6.10 QUnit/Blanket output running the imperative showStudent with valid input. The highlighted lines
represent statements that never ran. Because 12 of 15 lines ran, this registers only 80% of total coverage
information on this function.

Figure 6.11 A positive unit test against the functional showStudent generates
a 100% line-percentage coverage. Every line of the testable business logic is
executed!

175Measuring effectiveness through code coverage
MEASURING EFFECTIVENESS OF IMPERATIVE AND FUNCTIONAL CODE WITH INVALID INPUTS

Let’s measure the effectiveness of both programs when run with invalid conditions,
such as when the input is null. As you can see from figure 6.12, the imperative code
reports (not surprisingly) a mediocre coverage value:

QUnit.test('Imperative Show Student with null', function (assert) {
 const result = showStudent(null);
 assert.equal(result, null);
});

This result is due to the presence of if-else blocks that create divergent control
flow that branches in different directions. As you’ll see shortly, this also leads to
complex functions.

 In contrast, the functional program handles the null case much more gracefully,
because it only skips logic that would manipulate the invalid input (now null)
directly. But the entire structure of the program (the interaction among functions)
stays put and is successfully invoked and tested from start to finish. Recall that because
there’s an error, the output of the functional code is a Nothing. You don’t have to
check for a null output—the following test case is sufficient:

QUnit.test('Functional Show Student with null', function (assert) {
 const result = showStudent(null).run();
 assert.ok(result.isNothing);
});

Figure 6.12 The imperative version of showStudent skips the positive path of execution, which translates to
only a few lines being executed and a low 40% coverage.

176 CHAPTER 6 Bulletproofing your code
Figure 6.13 shows the areas that were left untouched due to the skipped logic.
 Even in the presence of invalid data, the functional program doesn’t just skip

execution of entire sections of code. It gracefully and safely propagates the invalid
condition in monads, outputting a decent 80% (twice as much as the imperative
counterpart); see figure 6.14.

Because it’s a lot more testable, the functional code should give you a sense of security
and comfort to deploy it to your production systems—in case immutability and elimi-
nation of side effects hasn’t done the trick. As mentioned earlier, the presence of con-
ditional and loop blocks in imperative code not only makes it hard to test and hard to

Figure 6.13 The functional version of showStudent skips lines related only to manipulating the data that
would have originated from an otherwise valid input.

Figure 6.14 The functional showStudent continues to yield great coverage
results even against invalid inputs.

177Measuring effectiveness through code coverage
reason about, but also further increases the complexity of the function in question.
How can you measure complexity?

6.5.2 Measuring the complexity of functional code

You can measure a program’s complexity by closely examining its control flow. At a
glance, you determine that a block of code is complex when it’s visually difficult to fol-
low. Functional programming presents a nice declarative view of the code that makes
it visually appealing. This equates to reduced complexity from the developer’s point
of view. In this section, you’ll see that functional code is also less complex from an
algorithmic point of view.

 Many factors can contribute to complex code, including conditional blocks and
loops, which can also be nested in other structures. Branching logic, for instance, is
mutually exclusive and splits the control-flow logic into two independent branches
according to a Boolean condition. Multiple if-else blocks in your code can be hard
to trace; the process is even harder when their conditions are based on external fac-
tors—side effects dictating the path the code should follow. The higher the number of
conditional blocks and nested conditional blocks, the harder functions are to test,
which is why it’s important to keep your functions as simple as possible. This is deeply
rooted in FP’s philosophy of reducing all functions to simple lambda expressions
whenever possible and combining them using composition and monads.

 Cyclomatic complexity (CC) is a quantitative software metric used to measure the
number of linearly independent paths that functions take. From this concept comes
the idea of verifying a function’s boundary conditions, to ensure that all possible paths
through the functions are tested. This is accomplished with some simple graph theory
of nodes and edges (as shown in figure 6.15):

■ Nodes correspond to indivisible blocks of code.
■ Directed edges connect two blocks of code if the second block can be possibly

executed after the first.

B

C

A

if-else

for

A

B C

filter reducemap

if-else

for

NodesEdges

Imperative Functional

Becomes

Figure 6.15 Imperative if-else blocks and for loops in imperative code are translated into the use of map,
filter, and reduce in functional programs.

178 CHAPTER 6 Bulletproofing your code
In chapter 3, we studied the difference between an imperative control-flow graph and
a functional one, and how functional cedes all branching and iteration logic to
higher-order operations like map and filter.

 What contributes to CC? Mathematically, the complexity of any program can be
computed as M = E – N + P, where

■ E = Number of edges in the flow
■ N = Number of nodes or blocks
■ P = Number of nodes that have exit points

All control structures contribute to CC; the lower the value, the better. A conditional
block affects complexity the most because it bifurcates the program’s control flow into
two linearly independent paths. So, naturally, the greater the number of control arti-
facts, the larger the CC metric will be, and, thus, the harder the program is to test.

 Let’s revisit the control flow of the imperative showStudent. To easily delineate the
flow, I’ve annotated the statements that translate to nodes in the graph and then gen-
erated a flowchart, shown in figure 6.16. Applying the CC formula to this graph with
11 edges, 10 nodes, and 3 exit points yields M = E – N + P = 11 – 10 + 3 = 4.

 On the other hand, measuring CC in functional programs is much simpler because
FP tends to avoid both loops and conditional statements as much as possible in favor
of higher-order functions, functional combinators, and other abstractions. All this
translates to fewer nodes and edges and all paths in the function being linearly inde-
pendent. Hence, functional programs tend to have a cyclomatic complexity value near 1.
This is exactly what happens with the functional showStudent, because it’s composed

showStudent(ssn) {

(ssn !== null) {

replace(/^\s*|\-|\s*$/g, '');

!== 9) {

Error('Invalid input');

db.get(ssn);

(student !== null) {

student.ssn},

${student.firstname},

${student.lastname}`;

document.querySelector(`\#${elementId}`)

= info;

Error('Student not

B

D

E

F

H

I End

B

T

C

T F

D E

FG

T

function

if

ssn = ssn.

if(ssn.length

throw new

}

var student =

if

var info =

`${

.innerHTML

return info;

}

else {

throw new

found!');

}

}

else {

return null;

}

}

A

C

G

A I

F

H

F

Figure 6.16 Potential nodes in the imperative version of showStudent. These labels have been converted into
a flowchart of nodes and edges, which illustrates the number of different linearly independent paths through the
code caused by the presence of conditional statements.

http://jscomplexity.org

179Summary
of many functions that don’t contain nodes and edges (just single exit points), mak-
ing its cyclomatic complexity value M = E – N + P = 0 – 0 + 1 = 1. In the realm of com-
plexity, some other related metrics extrapolated from both programs are worth
noting (see table 6.1). You can measure them with the help of the website at http://
jscomplexity.org.

The cyclomatic complexity density reexpresses the original CC value as a percentage
based on the number of imperative lines of code, which is also substantially lower in
functional programs. The degree to which a program is testable is directly propor-
tional to how well the program is designed. Simply put, the more modular your code
is, the easier it is to test. Functional programs easily take the lead because they
embrace the modularity of your units, which are the functions themselves.

 Because functional programming is heavily rooted in eliminating manual loops in
favor of higher-order functions; composition instead of imperative; sequential evalua-
tion of code; and higher levels of abstractions with currying, it’s not senseless to think
that all this could affect performance. Can we have our cake, and eat it too?

6.6 Summary
■ Programs that rely on abstractions to join very simple functions are modular.
■ Modular code based on pure functions is easy to test and leads the way for

more-rigorous types of testing methodology such as property-based testing.
■ Testable code must have a straightforward control flow.
■ A simple control flow reduces the complexity if your program as a whole. This

can be measured quantitatively via complexity metrics.
■ Reduced complexity leads to programs that are easy to reason about.

Table 6.1 Other important static code metrics comparing the imperative to the functional solutions

Imperative Functional

■ Cyclomatic complexity: 4
■ Cyclomatic complexity density: 29%
■ Maintainability index: 100

■ Cyclomatic complexity: 1
■ Cyclomatic complexity density: 3%
■ Maintainability index: 148

http://jscomplexity.org
http://jscomplexity.org

Functional optimizations
We should forget about small efficiencies, say about 97% of the time …
premature optimization is the root of all evil. Yet we should not pass up
our opportunities in that critical 3%.

—Donald Knuth, The Art of Computer Programming

This chapter covers
■ Indicating where functional code is performant
■ Examining the internals of JavaScript function

execution
■ Implications of nesting function contexts

and recursion
■ Optimizing function evaluation with lazy

evaluation
■ Speeding up program execution with

memoization
■ Unwinding recursive calls with tail recursive

functions
180

181Under the hood of function execution
Always optimize last, or so they say. In previous chapters, you learned how to write and
test your functional code; and now, nearing the end of this wonderful journey, we look
at ways to optimize it. No single programming paradigm is the Holy Grail, and each
has its share of trade-offs: performance versus abstraction, for example. Functional
programming provides layers of abstractions around your code to achieve its high
level of fluency and declarativeness. With all of this internal currying, recursion, and
monadic wrapping composed together to solve even the simplest types of problems,
you may wonder, “Is functional code as performant as imperative code?”

 It’s true that with most modern web applications nowadays, excluding games,
there’s nothing to be gained from cutting milliseconds of execution time from your
programs. Computers have become incredibly fast and compiler technology amaz-
ingly smart, which guarantees fast performance of correct code. FP isn’t any less per-
formant than imperative code, as you may think; it just shines in different ways.

 It’s not wise to begin using a new paradigm without understanding its implications
for the environment in which it’s running. So, in this chapter, I’ll explain some
aspects of functional JavaScript code that you need to be aware of, especially when
processing large amounts of data. I’ll be talking about core JavaScript features, like
closures, so make sure you’ve read and understood chapter 2. I’ll also discuss some
interesting optimization techniques such as lazy evaluation, memoization, and recur-
sive call optimizations.

 Functional programming won’t speed up the evaluation times of individual func-
tions; rather, its strategy is based on avoiding duplicated function calls and delaying
calling code until it’s absolutely needed, which may speed up your application overall.
In pure functional languages, these optimizations are built into the platform and can
be used without any involvement from you. In JavaScript, though, you’ll need to man-
ually plug in these optimizations via custom code or functional libraries. But before
we dive in, I’ll briefly show you the challenges of using JavaScript functionally and why
these optimizations are important.

7.1 Under the hood of function execution
Because FP relies on evaluating functions for everything you do, when learning about
performance and optimizations, it’s important to understand what goes on in each
function call. Every function call in JavaScript internally creates a record (a frame) in
the function context stack.

NOTE A stack is a basic data structure that contains objects such that insertion
and removal follow a last-in first-out (LIFO) approach. Consider the analogy
of a pile of dishes stacked one on top of another: all operations on the stack
are performed at the top.

The context stack is a component of the JavaScript programming model responsible
for managing the execution of a function and the variables it closes over (if you don’t
know what this means, please revisit closures in section 2.4). The stack always starts

182 CHAPTER 7 Functional optimizations
with the global execution context frame, which contains all global data, as shown in
figure 7.1.

The global context frame always resides at the bottom of the stack. Each function con-
text frame takes up a certain amount of memory depending on the number of local
variables contained within it. Without any local variables, an empty frame is approxi-
mately 48 bytes. Local variables and parameters like numbers and Booleans require 8
byes each. Intuitively, the more variables the function body declares, the larger the
stack frame. Each frame contains roughly the following information:1

executionContextData = {
 scopeChain,
 variableObject,
 this
}

From this structure, we can extract a few important insights. First, the variable-
Object property is what primarily determines the size of the stack frame, because it
has references to a function’s arguments, the actual array-like arguments object (cov-
ered in chapter 2), as well as any local variables and functions. Second, the function’s
scope chain is what links or references this function’s context with its parent execu-
tion context (I’ll talk more about the scope chain later). Whether directly or indi-
rectly, every function’s scope chain eventually links to the global context.

NOTE A function’s scope chain is different from a JavaScript object’s proto-
type chain. Although both behave in similar ways, the latter refers to the link
established in object inheritance through the prototype property. The scope
chain refers particularly to the access an inner function has to its outer func-
tion’s closure.

1 Information taken from David Shariff’s excellent blog post “What Is the Execution Context & Stack in
JavaScript?” June 19, 2012, http://mng.bz/mqTu.

Global context Always at the bottom

Figure 7.1 JavaScript’s execution
context stack on initialization.
Depending on how many scripts are
loaded on the page, the global
context can keep track of lots of
variables and functions.

Has access to this function’s
variableObject plus the parent
execution context’s variableObject

Contains this function’s
arguments, inner variables,
and function declarations

Reference to the function object
(remember that every function is
an object in the system)

http://mng.bz/mqTu

183Under the hood of function execution
The behavior of the stack is determined by the following important rules:

■ JavaScript is single-threaded, which means it has synchronous execution.
■ There is one and only one global context (shared among all function contexts).
■ You can have an unlimited number of function contexts (for client-side code,

different browsers can impose different limits).
■ Each function call creates a new execution context, even when calling itself

recursively.

As you know, functional programming exploits the use of functions to the maximum
degree, and you’re encouraged to decompose problems into as many functions as
possible as well as curry them for additional flexibility and reuse. But using lots of cur-
ried functions has its own implications on the context stack.

7.1.1 Currying and the function context stack

Personally, I am a huge fan of currying. In fact, I’d like for JavaScript to automatically
curry all function evaluations. But this additional level of abstraction can cause some
context overhead compared to a regular function evaluation. To understand this bet-
ter, let’s explore what happens under the hood of a curried function call in JavaScript.

 Recall from chapter 4 that when you curry a function, you internally transform its
evaluation mechanism from a single-shot call with all parameters, to multiple one-at-a-
time inner function executions. In other words, the logger function from chapter 4

const logger = function (appender, layout, name, level, message)

when curried, becomes this nested structure:

const logger =
 function (appender) {

return function (layout) {
return function (name) {

return function (level) {
return function (message) {

...

A nested structure uses the function stack more heavily than a straight call. First I’ll
explain the non-curried execution of logger. Due to JavaScript’s synchronous execu-
tion, a call to logger results in pausing execution of the global context to make way
for logger to run, becoming the new active context and creating a reference to the
global context for purposes of variable resolution. This is shown in figure 7.2.

 Internally, the logger function makes calls to other Log4js operations, which create
new function contexts that are put on the stack (if you haven’t done so, you can visit
the appendix for an introduction to Log4js). Due to closures in JavaScript, the func-
tion contexts resulting from inner function calls are stacked one on top of the other,
each taking up its fair share of allocated memory and linked via the scopeChain refer-
ence (see figure 7.3).

184 CHAPTER 7 Functional optimizations
Finally, once the Log4js code completes, it gets popped off the stack; the logger func-
tion follows suit, leaving the runtime back in its original state—with only the single
global context running (refer back to figure 7.1). This is the magic behind closures
in JavaScript.

 Although this approach is powerful, deeply nested functions can consume large
amounts of memory. In chapter 8, I’ll introduce you to RxJS, a functional library used
to handle asynchronous code. The latest release, RxJS 5, is a complete revamp of the
code from the previous version with focus on performance; reducing the number of
closures was a top priority.

Global context

Becomes the active context
(references the global context)

Paused (always at the bottom)

logger

scopeChain pointing
to the global context

Figure 7.2 When invoking any function, like logger in this case, the single-threaded JavaScript
runtime pauses the current global context and activates the context for the new function to run. At
this point, a link is created between the global context and the function context, traversable via the
scopeChain. Once logger returns, its execution context is popped off the stack, and the global
context resumes.

Becomes the active context

Paused (always at the bottom)

Paused

Global context

logger

Log4js

scopeChain pointing to the
function’s parent context

Figure 7.3 How the function context grows when running nested functions. Because each function
produces a new stack frame, the stack grows in proportion to the level of nesting in functions. Both
currying and recursion rely on nested function calls.

185Under the hood of function execution
Now let’s look at the curried version of the logger function, illustrated in figure 7.4.
 Currying all functions might seem like a good idea, but overdoing it can lead to

programs that take up larger chunks of stack space and run significantly slower. You
can run this simple benchmark program to prove it:

const add = function (a, b) {
 return a + b;
};

const c_add = curry2(add);

const input = _.range(80000);

addAll(input, add); //->511993600000000
addAll(input, c_add); //-> browser halts

function addAll(arr, fn) {
 let result= 0;
 for(let i = 0; i < arr.length; i++) {

for(let j = 0; j < arr.length; j++) {
result += fn(arr[i], arr[j]);

Becomes the active context

Paused (always at the bottom)

Paused. Each new function context represents a curried
invocation, which takes up a whole new stack.

Global context

loggerappender

Log4js

loggerlayout

loggername

loggerlevel

loggermessage

Figure 7.4 With currying, each parameter of the curried function is internally transformed
to a nested call. This flexibility of being able to supply parameters sequentially has the
downside of occupying additional stack frames.

186 CHAPTER 7 Functional optimizations
}
 }
 return result;
}

This program creates an array of 80,000 numbers and compares the non-curried ver-
sion to the curried function. The non-curried version returns the correct result in a
few seconds, whereas the curried function causes the browser to halt. Undoubtedly,
there’s a price to pay with currying, but having to process such large datasets in most
applications is highly unlikely.

 This isn’t the only situation that can cause the stack to grow. Inefficient or incor-
rect recursive solutions are the leading cases where the stack overflows.

7.1.2 Challenges of recursive code

New function contexts are created even when functions call themselves. An incorrect
recursive call—one where the base case is never reached—can easily cause the stack to
overflow. Luckily, recursion is one of those cases where it either works or it doesn’t,
and when it doesn’t, it’s not shy about letting you know. If you’ve ever had the plea-
sure of seeing the dreaded Range Error: Maximum Call Stack Exceeded or too much
recursion error, you know what I mean. You can benchmark your browser with this
simple script to get an approximate function stack size:

function increment(i) {
 console.log(i);
 increment(++i);
}
increment(1);

Different browsers implement stack errors differently: on my machine, Chrome fires
the exception after approximately 17,500 iterations, whereas Firefox will goes much
longer, to about 213,000 iterations. Don’t use these numbers as upper bounds below
which to write your functions! These are superfluous numbers meant to show you that
there are limits you can’t exceed. Your code should be far below these thresholds, or
you likely have a bug somewhere in your recursion.

 If you happen to deal with an unusually large amount of data using recursion, you
may cause the stack to grow proportionally to the size of the array. Consider this exam-
ple to find the longest string in an array:

function longest(str, arr) {
 if(R.isEmpty(arr)) {

return str;
 else {

let currentStr = R.head(arr).length >= str.length
? R.head(arr): str;

return longest(currentStr, R.tail(arr));
 }
}

187Under the hood of function execution
Running longest against all 192 countries in the world isn’t a problem, but using it to
find the longest city name out of 2.5 million can cause the application to fail; see fig-
ure 7.5. (Actually, this particular algorithm won’t fail with large arrays in ES6 Java-
Script; more on this later.)

An alternative to keep in mind when traversing lists this way, especially with unusually
large arrays, is to resort to using higher-order functions you learned about in chap-
ter 3, such as map, filter, and reduce. Using these functions doesn’t generate nested
function calls, and the stack size is recycled at each iteration.

 Although currying and recursion lead to functions that take up more memory
than their otherwise imperative counterparts, think of what you gain in terms of the
flexibility and reuse that come with currying, as well as the correctness inherent in
recursive solutions. These definitely make the extra memory requirements worth it.

 On the bright side, functional programming provides optimizations that other par-
adigms don’t. Placing lots of functions on the stack can increase your program’s mem-
ory footprint, so why not avoid making some calls altogether?

The last recursive step becomes the active context before all
contexts are popped out from the stack.

Paused (always at the bottom)

Paused. Each new function context represents a recursive step, which
takes up a whole new stack. These are removed when the stack unwinds.

Global context

longest0

longest1

longest2

longestn

..

.

Figure 7.5 The longest function, in order to find the longest string in an array of size n, grows
proportionally to the size of the input, inserting n frames into the context stack.

188 CHAPTER 7 Functional optimizations
7.2 Deferring execution using lazy evaluation
You can experience many performance benefits when avoiding unnecessary function
calls and large inputs when only a subset is sufficient. Functional languages like
Haskell have lazy function evaluation built into every function expression. There are dif-
ferent types of lazy-evaluation schemes, all with the same goal of delaying the execu-
tion of a function as much as possible, or until a dependent expression is called.

 But the more mainstream function-evaluation strategy, as used in JavaScript, is
eager evaluation. In eager evaluation, an expression is evaluated as soon as it’s bound
to a variable, regardless of whether the result of this function is needed; this is also
known as greedy evaluation. Consider the sample case of taking a subset of elements
from an array, shown in figure 7.6.

As you can see, in the eager-evaluation scheme, the range function is executed first; its
result is passed to take, which only requires a subset of the output, discarding the rest.
Think of how wasteful this would be if you were generating a larger number of ele-
ments. With lazy evaluation, on the other hand, the execution of range is deferred
until the dependent operation, take, demands it. Now, with more knowledge about
the function’s purpose, the range function only produces the required number of ele-
ments. Consider another example involving the Maybe monad:

Maybe.of(student).getOrElse(createNewStudent());

take(3) [1,2,3]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Function call is deferred

The function is evaluated first, and
all 10 elements are created.

Only three elements are created.

Take three elements,
and discard the others.

Eager evaluation

Lazy evaluation

range(1, 10)

take(3) [1,2,3]range(1, 10)

Figure 7.6 The composition of the function range (returns a list of numbers from beginning to end)
with take (reads the first n elements). In eager evaluation, the range function executes completely,
feeding its result to take. With lazy evaluation, the result of range never executes until the dependent
operation, take, is called.

189Deferring execution using lazy evaluation
At a glance, using Maybe may lead you to think this expression behaves like this:

if(!student) {
 return createNewStudent();
}
else {
 return student;
}

But due to JavaScript’s eager-evaluation scheme, this code will execute the create-
NewStudent function regardless of whether the student object is null. Under lazy
evaluation, the expression would have behaved like the earlier snippet and never
called createNewStudent if the student object were invalid. So how can you take
advantage of lazy evaluation? This section looks at a couple of tips and tricks:

■ Avoiding needless computations
■ Using shortcut fusion in functional libraries

7.2.1 Avoiding computations with the alternation functional
combinator

Not surprisingly, you can do certain things to emulate lazy evaluation and still reap
some of the benefits of pure functional languages. In the simplest case, you can avoid
a needless computation by passing functions by reference (or by name) and condi-
tionally invoking one or the other. In chapter 4, you saw the alt functional combina-
tor that takes advantage of the || (OR) operator to evaluate func1 first and only call
func2 in the event func1 produces a value of false, null, or undefined. Here it is
again, with an example:

const alt = R.curry((func1, func2, val) => func1(val) || func2(val));

const showStudent = R.compose(append('#student-info'),
 alt(findStudent, createNewStudent));

showStudent('444-44-4444');

Because the functional combinator takes care of orchestrating the calls, this code is
equivalent to the imperative conditional logic:

var student = findStudent('444-44-4444');
if(student !== null) {
 append('#student-info', student);
}
else {
 append('#student-info', createNewStudent('444-44-4444'));
}

No functions are prematurely
called, because they’re passed as
references for the combinator to
coordinate their invocations.

190 CHAPTER 7 Functional optimizations
This is a very simple way of avoiding computing functions unnecessarily with far less
duplication; I’ll show you a more powerful strategy later in this chapter when we get to
memoization. Alternatively, defining the entire program ahead of time, before it’s run,
can allow functional libraries to perform an optimization called shortcut fusion.

7.2.2 Taking advantage of shortcut fusion

In chapter 3, you learned about Lodash’s _.chain function, which is used to wrap and
execute an entire sequence of functions that you can trigger via the terminating
value() function. This not only allows you to separate a program’s description from
its execution, but also lets Lodash infer places for optimizations such as consolidating
the execution of some functions for more-efficient storage use. Here’s an example
that produces a sorted list of people’s country by count:

_.chain([p1, p2, p3, p4, p5, p6, p7])
 .filter(isValid)
 .map(_.property('address.country')) .reduce(gatherStats, {})
 .values()
 .sortBy('count')
 .reverse()
 .first()
 .value()

This declarative mode of programming means you don’t have to worry about how the
functions work, just what needs to be done, by defining what it is you want to accom-
plish ahead of time. On some occasions, this allows Lodash to internally optimize the
execution of your program using shortcut fusion. It’s a function-level optimization
that can merge the execution of some functions into one and condense the number
of internal data structures used to compute intermediate results. Creating fewer data
structures lowers the excess memory needed when processing large collections.

 This is possible due to functional programming’s strict rules about referential
transparency, which give it this unique mathematical or algebraic correctness. For
instance, the execution compose(map(f), map(g)) can be replaced by the expression
map(compose(f, g)) without altering the meaning. Similarly, compose(filter(p1),
filter(p2)) equates to filter((x) => p1(x) && p2(x)). This is exactly what happens
in the filter and map pair beginning the previous chain. Again, manipulating the
sequence of operations in this mathematical way is only possible with pure functions.
Let’s go over another example in the following listing to see this clearly.

const square = (x) => Math.pow(x, 2);
const isEven = (x) => x % 2 === 0;
const numbers = _.range(200);

const result =
 _.chain(numbers)
 .map(square)

Listing 7.1 Lodash’s lazy evaluation and shortcut fusion

Generates an array of
numbers 1–200

191Implementing a call-when-needed strategy
 .filter(isEven)
 .take(3)
 .value(); //-> [0,4,16]

result.length; //-> 5

Listing 7.1 has a couple of optimizations: First, the call to take(3) advises Lodash to only
worry about the first three values that pass the mapping and filtering criteria instead of
wasting precious cycles on the remaining 195 elements. Second, shortcut fusion allows
the subsequent calls to map and filter to fuse into compose(filter(isEven),
map(square)). You can easily proof this by augmenting the square and isEven func-
tions with trace logs (using Ramda to effectively compose the tap combinator for log-
ging purposes):

square = R.compose(R.tap(() => trace('Mapping')), square);
isEven= R.compose(R.tap(() => trace('then filtering')), isEven);

The console will show the following pair of messages repeated five times:

Mapping
then filtering

which confirms the merging of map and filter. Using functional libraries not only
simplifies your tests but also improves the runtime of your code. Other functions in
Lodash that benefit from shortcut-fusion are _.drop, _.dropRight, _.dropRightWhile,
_.dropWhile, _.first, _.initial, _.last, _.pluck, _.reject, _.rest, _.reverse,
_.slice, _.takeRight, _.takeRightWhile, _.takeWhile, and _.where.

 Along the same lines of avoiding computations until they’re needed is another
powerful optimization feature of functional programs called memoization.

7.3 Implementing a call-when-needed strategy
One way to speed up the execution of applications is to avoid computing repetitive
values, especially when these computations are expensive. In traditional object-ori-
ented systems, this is accomplished by placing a cache or proxy layer that’s checked
before a function is called. Upon return, the result of the function is given a key that
references it uniquely, and this key-value pair is persisted in the cache. A cache is an
intermediary repository, or memory, that’s queried before an expensive operation. In
web applications, it’s used for images, documents, compiled code, HTML pages, query
results, and so on. Consider this code snippet that implements a simple caching layer
for any function:

function cachedFn (cache, fn, args) {
 let key = fn.name + JSON.stringify(args);
 if(contains(cache, key)) {

Processes only the first three
numbers that pass the criteria
imposed by filter(map)

Formulates a key value to identify
the result of this function based on
the function name and arguments

Checks the cache first
to see if the provided
function was executed
previously

192 CHAPTER 7 Functional optimizations
return get(cache, key);
 }
 else {

let result = fn.apply(this, args);
put(cache, key, result);
return result;

 }
}

You can use this to wrap the execution of findStudent:

var cache = {};
cachedFn(cache, findStudent, '444-44-4444');
cachedFn(cache, findStudent, '444-44-4444');

This cachedFn function acts as a proxy between the function execution and its result
to ensure that the same function isn’t invoked twice. But writing code with this wrap-
per to serve every function call in your code is tedious and makes it hard to read.
What’s even worse is that this function has a side effect because it depends on a glob-
ally shared cache object. What we need is a ubiquitous solution that lets us enjoy the
benefits of caching while keeping our code and tests agnostic to this mechanism. In
functional languages, this mechanism is called memoization.

7.3.1 Understanding memoization

The caching scheme behind memoization, similar to the previous code, makes use of
the function’s arguments to create a unique key with which to store the function’s
result, so that on subsequent invocations of the function with the same arguments, the
stored result can be returned immediately. Relating the function’s result with its
input, or shall we say, equating the computation of a function’s input to a value, is
achieved due to a certain functional principle. You guessed it: referential transpar-
ency. First, let’s study the benefits of memoization with a simple function call.

7.3.2 Memoizing computationally intensive functions

Pure functional languages implement memoization automatically; others, like Java-
Script and Python, give you the option to choose when to memoize a function. Natu-
rally, functions that are computationally intensive can benefit from interlacing a
caching layer. Consider the example of computing a rot13 function, which encodes
strings into ROT13 format (rotation of the 26 ASCII characters of the alphabet by 13
positions). Although this is a weak algorithm, it’s practical in web applications for hid-
ing puzzle solutions and discount codes, muddling offensive material, and so on:

var discountCode = 'functional_js_50_off';

rot13(discountCode); //-> shapgvbany_wf_50_bss

If so, the value in the cache
is returned (cache hit).

Otherwise, the function
is run (cache miss).

Its result is stored
in the cache.

The first time results
in a cache miss, so
findStudent runs.

The second time, the value is
read straight from the cache.

193Implementing a call-when-needed strategy
Here are the details of the ROT13 algorithm:

var rot13 = s =>
s.replace(/[a-zA-Z]/g, c =>

String.fromCharCode((c <= 'Z' ? 90 : 122)
>= (c = c.charCodeAt(0) + 13) ? c : c - 26));
(c = c.charCodeAt(0) + 13) ? c : c - 26);

 });
};

Understanding it isn’t relevant to this discussion; the important thing to know is that
the computed message is always the same for the same input string (a referentially
transparent function), which means you can gain extraordinary performance benefits
by memoizing it. Before I show you the code for the memoize function, I want to show
that you can apply it in two ways:

■ By invoking a method on a function object:

var rot13 = rot13.memoize();

■ By wrapping the function definition shown earlier:

var rot13 = (s =>
s.replace(/[a-zA-Z]/g, c =>

String.fromCharCode((c <= 'Z' ? 90 : 122)
>= (c = c.charCodeAt(0) + 13) ? c : c - 26))).memoize();

With memoization, you expect a subsequent call of a function with the same input to
trigger the internal cache hit and return immediately. To illustrate this, let’s use
JavaScript’s High Resolution Time API (also known as Performance API) to produce
more-accurate timestamps than traditional JavaScript functions like Date.now() and
console.time(), and measure the elapsed time of a function call. You’ll use the IO
monad to inject time-capturing statements before and after the function under test.
The entire program involves creating simple start and end functions that wrap the
side effects in performance.now(), and tapping a simple function used to run the
function under test. The following listing shows the time-measuring code; I’ll omit it
in later examples to make the programs shorter.

const start = () => performance.now();

const end = function (start) {
 let end = performance.now();
 return (end - start).toFixed(3);
};

const test = function (fn, input) {
 return () => fn(input);
};

Listing 7.2 Using tap to add performance timing calls

Uses start and end functions
to measure time

Uses the Performance API to
measure time in milliseconds
to three decimal digits

194 CHAPTER 7 Functional optimizations

Cre
i

loca

fu
in
const testRot13 =
IO.of(start)

.map(R.tap(start('rot13')))

.map(R.tap(test(
rot13,
'functional_js_50_off'

)))
.map(end);

testRot13.run(); // 0.733 ms
testRot13.run(); // second time: 0.021 ms

As you can see, the second call to rot13 on the same string returns in a blink of an
eye. Although JavaScript has no built-in automatic memoization, you can add it to the
language by augmenting the Function object as shown next.

Function.prototype.memoized = function () {

 let key = JSON.stringify(arguments);

 this._cache = this._cache || {};

 this._cache[key] = this._cache[key] ||
this.apply(this, arguments);

 return this._cache[key];
};

Function.prototype.memoize = function () {

 let fn = this;
 if (fn.length === 0 || fn.length > 1) {

return fn;
 }

 return function () {
return fn.memoized.apply(fn, arguments);

 };
};

By extending the Function object, this implementation makes memoization ubiqui-
tous and also removes any observable side effects of accessing a globally shared cache.
In addition, abstracting the function’s internal caching mechanism makes it com-
pletely test-agnostic, which means you aren’t responsible for sprinkling caching state-
ments all over your code or for testing the caching functionality; you only worry about
what the function is supposed to do.

Listing 7.3 Adding memoization to function calls

Uses the tap combinator to let
start-time information propagate
through the monad (you do this
because you don’t care about the
result of the function, only the
time it takes to run)

Internal helper method responsible for
performing the caching logic for this

specific function instance

Stringifies the set of inputs to
obtain an identifier for this function.
This can be made more robust by
detecting the type of input and
applying a key-generation scheme
accordingly. But for these examples,
this is sufficient.

ates an
nternal
l cache
for this
nction
stance

Attempts to read the cache first to see
if the set of inputs had been computed
before. If the value is found, skips the
function and returns its result;
otherwise, runs the computation.

Enables memoization
of this function

Only attempts to memoize
unary functions

Wraps this function
instance into a
memoized function

195Implementing a call-when-needed strategy
 To get a clearer picture, look at the detailed sequence diagram of the memoization
of rot13 in figure 7.7. The first call to the memoized function results in a cache miss
and the ROT13 message being computed. On completion, the result of the computa-
tion is stored with a key generated from the input arguments so that the result can be
reused and skip all computations on the next invocation.

NOTE The examples in this book memoize functions of one argument. But
how would you handle functions of multiple arguments? I won’t cover this,
and instead leave it to you as an exercise to research, but there are two strate-
gies you can follow: you can create a multidimensional cache (an array of
arrays), or you can create a unique key by combining the string representa-
tion of the arguments.

If you closer at the code in listing 7.3, you’ll notice that memoization is limited to
unary functions. I did it this way to simplify the key-generation step in the caching
logic. If you need to memoize functions that take multiple arguments, the logic for
formulating a proper cache key can get complicated and expensive. In some cases,
though, currying can help you work around this issue.

rot13

_cache
functional_js_50_off

Check cache

Function Key Value

rot13 functional_js_50_off shapgvbany_wf_50_bss

put(func..., ... shap...)

Function Key Value

[empty]

Contains

false

memoized

shapgvbany_wf_50_bss

Run function

shapgvbany_wf_50_bss

functional_js_50_off
Check cache

Contains

true

get

shapgvbany_wf_50_bss
shapgvbany_wf_50_bss

First call

Second call

Figure 7.7 A detailed view of two calls to the rot13 function with the message “functional_js_50_off.” The first
time around, with an empty cache, the ROT13 code of the provided discount code is computed. This result is
stored in the internal cache with a key generated from this input. The second call results in a cache hit: the value
is directly returned without the hash being computed again.

196 CHAPTER 7 Functional optimizations

7.3.3 Taking advantage of currying and memoization

More-complex functions, or functions involving multiple arguments, are harder to
cache, even if they’re pure. This is due to the increased complexity in generating a
proper key value—an operation that needs to be simple and quick in order to avoid
incurring additional overhead in the caching layer. One way to mitigate this is
through currying. Recall from chapter 4 that currying is used to transform a multivar-
iate function into a unary function. Currying allows you to memoize a function like
safeFindObject through findStudent:

const safeFindObject = R.curry(function (db, ssn) {
 // expensive IO lookup operation
});

const findStudent = safeFindObject(DB('students')).memoize();
findStudent('444-44-4444');

This works because the DB object is used only for data access and doesn’t contribute to
uniquely distinguishing the purpose of findStudent, which is to find a student by a
unique ID. The emphasis on making functions unary is not only to make them easier
to work with and compose, but also so that memoization can take advantage of finer-
grained decomposition and implement caching across the components that make up
the entire program. Let’s discuss this next.

7.3.4 Decomposing to maximize memoization

The relationship of memoization and decomposition can be understood with a simple
chemical analogy that will take you on a stroll down memory lane (bear with me!).
You may have learned in high school chemistry, when studying the principles of solu-
bility, that a solution is composed of a solute and a solvent. A solute is the substance
that dissolves in the solvent. The rate of solution, which is how quickly a solute dis-
solves, is determined by many factors, one of which is surface area. For instance, if you
prepare two solutions of sugar and water, one with powdered sugar and the other with
chunks of sugar, which one dissolves faster? When sugar dissolves, only its surface
comes in contact with the water. Therefore, the greater the surface area of the solute,
the faster it dissolves.

 This same analogy can be applied to breaking up problems into tiny, memoizable
functions. The more fine-grained your code is, the greater the benefits obtained via
memoization will be. Each and every function’s internal caching mechanism is playing
a role in speeding up evaluation of your programs—there’s more surface contact, if
you will.

 In the case of showStudent, for example, if you’ve previously validated certain
inputs, why bother to validate them again? Similarly, if you’ve fetched student objects
by SSN from a local store, with cookies, or even via a server-side call, and you don’t

This function isn’t referentially
transparent, but in practice
it’s customary to cache the
results of expensive lookups
and remote HTTP requests.

197Implementing a call-when-needed strategy
expect them to have changed, why waste precious time doing the lookup again?
What’s remarkable is that in the case of findStudent, memoization can serve as a
small query cache, retaining already-fetched objects for quick access. Memoization
puts the icing on the cake in terms of reasoning about functions as just values—lazily
computed values. To illustrate, let’s replace some of the functions in showStudent
with their memoized counterparts (just for illustration purposes, the memoized func-
tions are prefixed with m_—this isn’t a general convention):

const m_cleanInput = cleanInput.memoize();
const m_checkLengthSsn = checkLengthSsn.memoize();
const m_findStudent = findStudent.memoize();

const showStudent = R.compose(
 map(append('#student-info')),
 liftIO,
 chain(csv),
 map(R.props(['ssn', 'firstname', 'lastname'])),
 map(m_findStudent),
 map(m_checkLengthSsn),
 lift(m_cleanInput));

showStudent('444-44-4444').run(); //-> 9.2 ms on average (no memoization)

showStudent('444-44-4444').run(); //-> 2.5 ms on average (with memoization)

Because this function is decomposed into smaller tasks, the speed improvements are
compounded, creating a program that runs 75% faster the second time around!

 Recursion is another type of decomposition, where a program is split into self-
similar smaller tasks—memoizable, self-similar subtasks. Likewise, memoization can
turn a slow-performing recursive algorithm into a really fast one.

7.3.5 Applying memoization to recursive calls

Recursion can cause a browser to grind to a halt or throw nasty exceptions. This
tends to happen when the stack grows out of control, such as when processing very
large input. In some cases, memoization can help mitigate the issue. As you learned
in chapter 3, recursion is a mechanism of decomposing a task into smaller versions
of itself. Typically, a recursive call solves “the same problem,” or a subset of the big-
ger problem, many times until it reaches the base case, which finally causes the
stack to unwind and the result to be returned. If you could cache the results of
the subtasks, you could improve the performance of invoking this same function on
bigger input.

 To illustrate, you’ll use a simple function that computes the factorial of a number
n. The factorial of n (denoted n!) is the product of all positive integers less than or
equal to n:

 n! = n * (n – 1) * (n – 2) * … * 3 * 2 * 1

198 CHAPTER 7 Functional optimizations
For example:

 3! = 3 * 2 * 1 = 6
 4! = 4 * 3 * 2 * 1 = 4 * 3! = 24

The program for this task can be nicely expressed as a memoized recursive solution:

const factorial = ((n) => (n === 0) ? 1
: (n * factorial(n - 1))).memoize();

factorial(100); //-> Takes .299 ms
factorial(101); //-> Second time, takes .021 ms

Because memoization uses the mathematical principles of factorials, you obtain
remarkable throughput in the second iteration of the function. In the second run, the
function “remembers” to use the formula 101! = 101 × 100! and can reuse the value of
factorial(100), causing the entire algorithm to short-circuit and return instantly.
This has other benefits in terms of stack frame management and avoiding stack pollu-
tion; see figure 7.8.

Notice that factorial numbers can also
be recursively defined in terms of
smaller factorials, such as 4! = 4 × 3!.

Runs through the entire
computation 100 × 99 ×
98 × … × 3 × 2 × 1

Uses the previously cached
value to shortcut the
computation, stopping
at 101 × 100!

Global context

factorial100

factorial99

factorial3

factorial2

factorial1

...

factorial(100)

Global context

factorial101

factorial100

factorial(101) (memoized)

Upon completion, the result is stored as
factorial(100)

Function Key Value

factorial 100 9.33262154439441e+157

factorial 101 9.425947759838354e+159

100 stack
frames

2 stack
frames

Second call, read the value for
factorial(100) from cache

Figure 7.8 Running the memoized factorial(100) the first time creates 100 stack frames because it needs
to compute 100! by multiplying every single number. On the second call to factorial with 101, via memoization
it’s able to reuse the result of factorial(100) and create only 2 stack frames.

199Recursion and tail-call optimization (TCO)
As you can see, the first run of factorial(100) runs through the entire algorithm,
creating 100 frames on the function stack. This is the downfall of some recursive solu-
tions: they tend to be careless with stack space, especially in cases such as factorial
that use frames proportional to the input received. But with memoization, you can sig-
nificantly reduce the number of stack frames required to compute the next number.

 Memoization isn’t the only method to optimize recursive calls. There are other
ways to benefit performance by using compiler-level instrumentation.

7.4 Recursion and tail-call optimization (TCO)
All along, you’ve seen that programs with recursion use the stack much more heavily
than ones that don’t. Some functional languages don’t even have built-in looping
mechanisms and rely on recursion and memoization to implement efficient iteration.
But there are cases where even memoization won’t help much, such as when the
nature of the input to the functions is always changing; then, nothing is gained from
having an internal caching layer. Can recursion be optimized to run as efficiently as
standard loops? It turns out that you can write recursive algorithms in such a way that
compilers help you achieve this with tail-call optimization (TCO). In this section, you’ll
learn that this recursive factorial function

const factorial = (n, current = 1) =>
 (n === 1) ? current
 : factorial(n - 1, n * current);

which is slightly different than the previous one because it places the recursive step in
tail position, runs as fast as the imperative version:

var factorial = function (n) {
 let result = 1;
 for(let x = n; x > 1; x--) {
 result *= x;
 }
 return result;
}

TCO, also known as tail-call elimination, is a compiler enhancement added to ES6 that
flattens the execution of a recursive call into a single frame. But this can only occur
when the last act of the recursive solution is to invoke another function (typically
itself); this last invocation is said to be in tail position (hence the name).

 Why is this an optimization? Having a function call as the last thing to run in a
recursive function allows the JavaScript runtime to realize it doesn’t need to hold on
to the current stack frame any longer, because it doesn’t have any more work to do; so
it discards the stack frame. In most cases, you achieve this by transferring all the neces-
sary state from one function context to the next as part of the function’s arguments
(as you saw in the recursive factorial function). This way, the recursive iteration tends
to happen with a new frame every time, recycled from the previous one, instead of

The recursive step is now the
last statement in this function
(said to be in tail position).

200 CHAPTER 7 Functional optimizations
frames stacked one after the other. Because factorial is in tail form, the execution of
factorial(4) goes from the typical recursive pyramid of calls

factorial(4)
 4 * factorial(3)
 4 * 3 * factorial(2)

4 * 3 * 2 * factorial(1)
4 * 3 * 2 * 1 * factorial(0)

4 * 3 * 2 * 1 * 1
4 * 3 * 2 * 1

 4 * 3 * 2
 4 * 6
return 24

to the following flat structure, as shown in figure 7.9, with respect to the context stack:

factorial(4)
 factorial(3, 4)
 factorial(2, 12)
 factorial(1, 24)
 factorial(0, 24)
 return 24
return 24

As you can see, this flatter structure makes more efficient use of the stack, which no
longer needs to unwind n frames. Let’s step through the process of converting the
non-tail factorial function into the tail-recursive function.

Single frame
at a time

Global context

factorial4
return

f(3,4)

Global context

factorial3
return

f(2,12)

Global context

factorial2
return

f(2,24)

Global context

factorial1
return

f(0,24)

Global context

factorial0
return 1

Throw away the current frame, and replace it with a new
frame to compute the next value.

= 24

Figure 7.9 A detailed view of tail-recursive factorial(4) evaluation. As you can see, the function uses a
single frame. TCO is in charge of throwing the current function frame to give way for a new one, as if factorial
was being evaluated in a loop.

201Recursion and tail-call optimization (TCO)
7.4.1 Converting non-tail calls to tail calls

Let’s optimize factorial to take advantage of JavaScript’s TCO mechanism. The
recursive implementation of factorial that you started with

const factorial = (n) =>
 (n === 1) ? 1
 : (n * factorial(n - 1));

wasn’t in tail position because the last return expression multiplies a number times
the value of the recursive step: n * factorial(n - 1). Remember that for TCO to
occur, the last step needs to be the recursive step, which is what allows the runtime to
convert factorial into a loop. You’ll do this in two steps:

1 Move the multiplication as an additional parameter to the function, to keep
track of the current multiplication.

2 Use ES6 default parameters to preset a default value for this argument (you
could also partially apply them, but with default arguments it will look much
cleaner):

const factorial = (n, current = 1) =>
 (n === 1) ? current :

factorial(n - 1, n * current);

Now this factorial function will run as if it were implemented with standard looping,
with no additional stack frames created, while still preserving some of the declara-
tive and mathematical feel it originally had. This transformation takes place because
a tail-recursive function shares common features with a standard loop, as shown in
figure 7.10.

var factorial = function (n) {

let result = 1;

for(let x = n; x > 1; x--) {

result *= x;

}

return result;

}

var factorial = (n, current = 1)

=> (n === 1) ? current :

factorial(n - 1, n * current);

Base case

Result

Afterthought

Figure 7.10 The similarities between a standard loop (left) and its equivalent tail-recursive function. In
both code samples, you can easily see the base case, the afterthought or accumulated parameter, and
the result.

202 CHAPTER 7 Functional optimizations
Let’s examine another example. In chapter 3, you saw a small recursive solution to sum
up all the elements in an array:

function sum(arr) {
 if(_.isEmpty(arr)) {

return 0;
 }
 return _.first(arr) + sum(_.rest(arr));
}

Again, you can see that the last action this function performs, _.first(arr) +
sum(_.rest(arr)), isn’t in tail form. Let’s refactor this code and optimize it for mem-
ory consumption. Again, any data that needs to be shared with subsequent invocations
is now added as part of the function arguments:

function sum(arr, acc = 0) {
 if(_.isEmpty(arr)) {

return 0;
 }
 return sum(_.rest(arr), acc + _.first(arr));
}

Tail recursion brings the performance of a recursive loop closer to that of a manual
loop. So in languages that have it, as ES6 JavaScript does, it can be used as a replace-
ment for manual loops when performance is of upmost priority, while keeping the
correctness of the algorithm and controlling mutations. But tail calls aren’t limited to
recursion. They can be used with any function whose last action is to invoke another
function, which tends to happen quite a bit in JavaScript applications. The caveat
when using TCO, however, is that this new JavaScript standard, which began to be
drafted with ES4, is not yet widely adopted by browsers. In fact, as of this writing, none
of the browsers have TCO natively implemented, which is why I’ve been using the
Babel transpiler.

Emulating tail-recursive calls in ES5
The current mainstream JavaScript implementation, ES5, doesn’t have support for
tail-call optimization. This was added to the language with the ES6 proposal known
as proper tail calls (section 14.6 of the ECMA-262 specification). Recall from chapter
2 that the examples work due to the use of the Babel transpiler, a source-to-source
compiler, which is an excellent way to test out the future features of the language.

But you can work around this through a process called trampolining. Trampolining is
a way to simulate tail recursion in an iterative way, which is ideal for controlling func-
tion stack growth in stack-based languages like JavaScript.

A trampoline is a function combinator that takes another function as input and
invokes it repeatedly (or bounces a function, if you will) until a certain condition
occurs. The function that bounces or repeats is encapsulated in a structure called a

203Summary
If you’re writing a tight graphics-rendering loop or you need to process large datasets
in a short time, then performance becomes a key requirement. In these cases, you’re
ready to make the necessary trade-offs, and you aren’t looking to write elegant, exten-
sible code—you need to get the job done fast. For this, I recommend sticking to stan-
dard loops. But for most application needs, functional programming remains a very
performant way to write code. Always optimize last; and, in certain edge cases that
require extra milliseconds of performance, you can always use any of the performance
enhancements provided in this chapter.

 Every software decision has an equal opposing force; but for most applications, sac-
rificing efficiency in favor of maintainability is a valid trade-off, in my opinion. I’d
much rather write code that is easy to read and debug, even if it’s not the fastest. As
Knuth said, “In 97% of the code you write, a few extra milliseconds make no differ-
ence, especially compared to the value of writing maintainable code.”

 Functional programming is a complete paradigm. It provides a rich level of
abstraction and redirection while crafting interesting ways to make it efficient. Until
now, you’ve learned how to create functional programs with linear data flows
through chaining or composition. But as you’re well aware, JavaScript programs mix
in lots of nonlinear or asynchronous behavior, such as when handling user input or
making remote HTTP requests. In chapter 8, you’ll take on these challenges and
learn about reactive programming, a paradigm built on the principles of functional
programming.

7.5 Summary
■ In certain cases, functional code can be slower or consume more memory than

its equivalent imperative counterpart.
■ You can implement a deferred strategy using lazy evaluation by taking advan-

tage of the alternation combinator and the support provided in functional
libraries like Lodash.

■ Memoization, an internal function-level caching strategy, can be used to avoid
duplicating the evaluation of potentially expensive functions.

thunk. A thunk is nothing more than a function wrapper used to assist a call to
another function. In the context of functional JavaScript, thunks lazily wrap an argu-
ment expression in an anonymous function that has no parameters of its own, delay-
ing its evaluation until a receiving function invokes the anonymous function.

The topics of trampolining and thunks are outside of the scope of this book, so if
you’re desperately seeking to optimize your recursive functions now, I recommend
you begin your research here.

To check for the compatibility of TCO and other ES6 features, you can check out the
following website: https://kangax.github.io/compat-table/es6/.

https://kangax.github.io/compat-table/es6/

204 CHAPTER 7 Functional optimizations
■ Decomposing programs into simple functions can not only create extensible
code, but also make it more efficient via memoization.

■ Decomposition also extends into recursion as a method to solve a problem in
terms of self-similar simpler problems, fully utilizing memoization to optimize
the use of the context stack.

■ Converting functions to tail-recursive form allows you to take advantage of a
compiler enhancement known as tail-call elimination.

Managing asynchronous
events and data
Functional programmers argue that there are great material benefits—
that a functional programmer is an order of magnitude more
productive than his conventional counterpart, because functional
programs are an order of magnitude shorter.

—John Hughes, “Why Functional Programming Matters”1

This chapter covers
■ Identifying the challenges of writing

asynchronous code
■ Avoiding the use of nested callbacks through

functional techniques
■ Streamlining asynchronous code using promises
■ Generating data lazily with function generators
■ Introducing reactive programming
■ Applying reactive programming to tackle event-

driven code

1 From Research Topics in Functional Programming,” ed. D. Turner (Addison-Wesley, 1990), 17–42, http://
mng.bz/Zr02.
205

http://mng.bz/Zr02
http://mng.bz/Zr02

206 CHAPTER 8 Managing asynchronous events and data
Until now, you’ve been learning how to think functionally and using functional tech-
niques to write, test, and optimize your JavaScript code. All of these techniques are
designed to tame the complexities intrinsic to mid- and large-scale web applications,
which can easily become increasingly difficult to maintain. Many years ago, interac-
tion with web applications was limited to submitting large forms and rendering entire
pages at once. Applications have evolved, and with them the demands of users. Nowa-
days, we all expect pages to behave more like native applications that respond and
react in real time.

 In the world of client-side JavaScript, the number of challenges we face is greater
than in any other environment. This is directly influenced by the emergence of bulky
client code that not only shares the burden associated with conventional web middle-
ware, but also needs to effectively interact with user input, communicate with remote
servers (via AJAX), and display data on the screen, all at once. The proposed solution
in this book is functional programming, which is ideal for systems that need to main-
tain a high level of integrity despite all of these concerns.

 In this chapter, you’ll apply functional programming to tackle real-world JavaScript
programming challenges related to asynchronous data flows where code isn’t linear to
the program’s execution. Some of the examples feature browser technology like AJAX
and local storage requests. The goal is to use functional programming in conjunction
with ES6 promises, as well as introduce reactive programming, both of which are used
to turn messy callback code into elegant, fluent expressions. Reactive programming
will seem familiar because it’s a way of thinking about problems that follows closely
from functional programming.

 Asynchronous behavior is tricky to get right. Unlike normal functions, asynchro-
nous functions can’t just return data to the caller. Instead, you rely on the infamous
callback pattern that notifies you when long-running computations, database fetches,
or remote HTTP calls have been computed. You also use callbacks to handle browser
events like clicks, key presses, and mobile gestures in response to user interaction. You
need to build code that responds to these events happening after your program is
run, which poses many challenges for a functional design that instead expects data to
come in predictably and at the right time. After all, how you can compose or chain
functions for behavior that will happen in the future?

8.1 Challenges of asynchronous code
Modern JavaScript programs are seldom loaded in a single request; most often, data is
progressively loaded on the page by multiple asynchronous requests that respond to a
user’s needs. A simple use case is an email client. Your inbox can have thousands of
long email threads, yet you see and interact only with the recent ones. It doesn’t make
sense for you to have to wait a few seconds (or even minutes) for your entire inbox to
load. As JavaScript developers, we deal with problems of this nature frequently, and

207Challenges of asynchronous code
they all involve implementing some form of nonblocking asynchronous calls, which
can present the following challenges:

■ The creation of temporal dependencies among your functions
■ The inevitable fall into a callback pyramid
■ An incompatible mix of synchronous and asynchronous code

8.1.1 Creating temporal dependencies among functions

Consider a function used to perform an AJAX request to fetch a list of student objects
from the server. In figure 8.1, because getJSON is asynchronous, the function returns
as soon as the request is sent and gives control back to the program, which subse-
quently invokes showStudents. But at this point in time, the students object is still
null because the slower remote request hasn’t yet completed. The only way to ensure
that the right order of events transpires is to create a temporal dependency between the
asynchronous code and the action to take next. This involves including showStudents
in the callback function so that it’s executed at the right time.

Temporal coupling or temporal cohesion occurs when the execution of certain functions is
logically grouped together. This is done when functions need to wait for data to be
available or need to wait for other functions to run. Whether you’re depending on
data or, in this case, time, both can cause side effects.

 Because performing remote IO operations is noticeably slower than the rest of
your code, you delegate them to nonblocking processes that can request data and
“wait” for it to come back. When data is received, the user-provided callback func-
tion is invoked. This is precisely what getJSON does; the following listing shows
the details.

var students = null;

getJSON('/students', function(studentObjs) {

students = studentObjs;

},

function (errorObj) {

console.log(errorObj.message);

}

);

showStudents(students);

This flow is temporally broken
because the student object
won’t be initialized in time.

Figure 8.1 This code has a big problem. Can you spot it? Because you need to fetch data
asynchronously, the students object will never be populated in time to be added to the
roster table.

208 CHAPTER 8 Managing asynchronous events and data
const getJSON = function (url, success, error) {
 let req = new XMLHttpRequest();
 req.responseType = 'json';
 req.open('GET', url);
 req.onload = function() {

if(req.status == 200) {
let data = JSON.parse(req.responseText);
success(data);

}
else {

req.onerror();
}

 }
 req.onerror = function () {

if(error) {
error(new Error(req.statusText));

}
 };
 req.send();
};

Callback functions are commonly used in JavaScript. But they’re hard to scale when
you need to load more data sequentially, which leads to the popular callback pattern.

8.1.2 Falling into a callback pyramid

The main use of callbacks is to avoid blocking the UI to wait for long-running pro-
cesses to complete. Functions that accept a callback instead of returning values imple-
ment a form of inversion of control: “Don’t call me, I’ll call you.” As soon as an event
happens, such as data being available or a user clicking a button, the callback function
is invoked with the requested data to allow your synchronous code to run:

var students = null;
getJSON('/students',
 function(students) {

showStudents(students);
 },
 function (error) {

console.log(error.message);
 }
);

In the event of an error, the corresponding error callback function is called, giving
you the chance to report the error and recover. But this inversion of control works
against the design of functional programs, where functions are supposed to be inde-
pendent of one another and are expected to return values to the caller immediately.
As I said earlier, this situation worsens if you need to add more asynchronous logic
into already-nested callbacks.

Listing 8.1 Function getJSON using the native XMLHttpRequest

209Challenges of asynchronous code
 To show this, consider a slightly more complicated scenario. Suppose that after
fetching a list of students from the server, you also need to fetch grades—but only for
students residing in the United States. This data is then sorted by SSN and displayed
on an HTML page, as shown in the next listing.

getJSON('/students',
 function (students) {

students.sort(function(a, b){
if(a.ssn < b.ssn) return -1;
if(a.ssn > b.ssn) return 1;
return 0;

});
for (let i = 0; i < students.length; i++) {

 let student = students[i];
 if (student.address.country === 'US') {
 getJSON(`/students/${student.ssn}/grades`,
 function (grades) {
 showStudents(student, average(grades));
 },
 function (error) {
 console.log(error.message);
 });
 }

}
},
function (error) {

console.log(error.message);
 }
);

Before you read this book, this code would’ve looked acceptable to you; but to a func-
tional programmer such as yourself, it looks messy and tangled (later, I’ll show you a
complete functional version of this code). The same effect occurs when handling
events. Listing 8.3 interleaves AJAX calls with user-input handling. It listens for clicks
and mouse events, fetches multiple pieces of data from the server, and renders the
data on the DOM.

var _selector = document.querySelector;
_selector('#search-button').addEventListener('click',
 function (event) {
 event.preventDefault();

 let ssn = _selector('#student-ssn').value;
 if(!ssn) {

console.log('WARN: Valid SSN needed!');
return;

 }

Listing 8.2 Nested JSON calls, each with its own success and error callbacks

Listing 8.3 Retrieving student records from the server by SSN

First level of nesting on the
first AJAX request with
success and error callbacks

Second level of
nesting to fetch grade
data for each student
with its own success
and error callbacks

You receive
grades for each
student, so you

change this
function to add
each student to

the table with
the respective

grade, one
at a time.

First level of nesting on the
first AJAX request with
success and error callbacks

210 CHAPTER 8 Managing asynchronous events and data
 else {
getJSON(`/students/${ssn}`, function (info) {

_selector('#student-info').innerHTML = info;
 _selector('#student-info').addEventListener('mouseover',

function() {
getJSON(`/students/${info.ssn}/grades`,

function (grades) {
// ... process list of grades for this
// student...

});
});

})
.fail(function() {

console.log('Error occurred!');
});

 }
});

Again, this code is hard to follow. As you can see, nesting a sequence of callbacks
quickly makes the code resemble a horizontal pyramid like the one shown in figure 8.2.
This is known casually as “callback hell” or the “Christmas tree of doom,” characteris-
tic of programs dealing with lots of asynchronous code and user/DOM behavior.

When a program begins taking this form, you find yourself relying on spacing and syntac-
tic organization, such as grouping statements just to improve readability. But this is just
putting lipstick on a pig. Let’s see how thinking functionally can help in this situation.

8.1.3 Using continuation-passing style

Listing 8.3 is another example of a program that hasn’t been properly decomposed.
The nested callback functions not only are hard to read, but also create closures that
enclose their own scope plus the variable scope of the functions in which they’re
nested. The only reason to nest a function in another is when it needs direct access to

Control flow

Begin async

success

http

error

Control returns
back to caller

http

success

error

1st level

2nd level

Nested control
flow

Figure 8.2 A program’s
simple linear control flow
breaks down on a remote
call and degenerates into
a waterfall of nested
function calls—a pyramid
that grows horizontally
like a “Christmas tree
of doom.”

211Challenges of asynchronous code
its outer variables in order to fulfill its purpose. But in this case, the inner callback
function that processes all the grades still keeps references to unnecessary external
data. One solution that makes this code better is to unravel it by using continuation-
passing style (CPS). In the following listing, I refactored listing 8.3 using CPS.

var _selector = document.querySelector;

_selector('#search-button').addEventListener('click', handleMouseMovement);

var processGrades = function (grades) {
 // ... process list of grades for this student...
};

var handleMouseMovement = () =>
 getJSON(`/students/${info.ssn}/grades`, processGrades);

var showStudent = function (info) {
 _selector('#student-info').innerHTML = info;
 _selector('#student-info').addEventListener(

'mouseover', handleMouseMovement);
};

var handleError = error =>
 console.log('Error occurred' + error.message);

var handleClickEvent = function (event) {
 event.preventDefault();

 let ssn = _selector('#student-ssn').value;
 if(!ssn) {

alert('Valid SSN needed!');
return;

 }
 else {

getJSON(`/students/${ssn}`, showStudent).fail(handleError);
 }
};

All I did was separate the inner callbacks into separate functions or lambda expres-
sions. CPS is a style of programming used for nonblocking programs that encourages
you to separate pieces of a program into individual components; for this reason, it’s
an intermediate form of functional programming. In this case, the callback functions
are known as the current continuations, which are provided by its callers on the return
value. An important advantage of CPS is its efficiency in terms of the context stack
(revisit chapter 7 for information on JavaScript’s function stack). If your program is
completely in CPS (like listing 8.4), continuing into other functions will clean up the
current function’s context and prepare a new one to support the function that contin-
ues the flow of the program—every function is essentially in tail form.

 Using continuations also fixes a problem in listing 8.2 that occurs when interlac-
ing synchronous and asynchronous behavior. The problematic section of code is the

Listing 8.4 Refactoring student retrieval using continuation-passing style

212 CHAPTER 8 Managing asynchronous events and data
nested loop that makes AJAX requests to retrieve each student’s grades and compute
their average:

for (let i = 0; i < students.length; i++) {
 let student = students[i];
 if (student.address.country === 'US') {

getJSON(`/students/${student.ssn}/grades`,
function (grades) {

showStudents(student, average(grades));
},
function (error) {
console.log(error.message);

}
);

 }
}

At a glance, this code looks like it should work and print the names of students Alonzo
Church and Haskell Curry with their respective information (the code uses an HTML
table to append all data for each student, but it could also be a file or a database
insert). Running it, however, produces the result shown in figure 8.3.

Certainly not what you expected. Why is the same student printed twice? The error is
due to using a synchronous artifact—a loop, in this case—to execute an asynchronous
function, getJSON. The loop doesn’t understand that it needs to wait for getJSON to
complete. Regardless of using the block-scoped keyword let, all the inner calls to
showStudents(student, average(grades)) see the last student object reference in its
closure, displaying the same student record. We discussed this in chapter 2 when we
looked at the ambiguous loop problem, and it’s a testimony that a function’s closure
isn’t a copy of its enclosing environment but an actual reference to it. Notice that the
grade column is still correct, though. This is because the fetched value is properly
passed into the callback by coupling the right value to the function’s parameter.

Figure 8.3 Results from running the buggy imperative code that mixes asynchronous functions with a
synchronous loop. While fetching the remote data, the function call will always refer to the last iterated
student record (in its closure) and print it several times.

213Challenges of asynchronous code

ou to
to a

n.

nt)
h
 As you learned in chapter 2, the solution to this problem is to properly scope the
student object into a function that makes the AJAX request. Using CPS in this case is
not as straightforward as before, because the nested callback function to handle the
grades depends on the student object as well. Remember, this is a side effect. Restor-
ing the continuation requires you to think about what you learned in chapter 4 on
currying, to help link function inputs and outputs:

const showStudentsGrades = R.curry(function (student, grades) {
 appendData(student, average(grades));
});

const handleError = error => console.log(error.message);

const processStudent = function (student) {
 if (student.address.country === 'US') {

getJSON(`/students/${student.ssn}/grades`,
showStudentsGrades(student), handleError);

 }
};

for (let i = 0; i < students.length; i++) {
 processStudent(students[i]);
}

This new code computes the correct results shown in figure 8.4.

Adopting a continuation passing style helps to break the temporal dependency in
your code, as well as disguise the asynchronous flow into a linear evaluation of func-
tions—both good things. But someone else reading this code, who isn’t familiar with
it, may be confused as to why the functions aren’t executing at the right times. You
need to make these long-running operations first-class objects in your programs.

Currying lets y
convert this in
unary functio

Function appendData
appends the rows on
the HTML table.

The curried function
showStudentsGrades(stude
is eventually called back wit
the grade data.

Passing the looped object into
the function effectively captures
the student into its closure.

Figure 8.4 Passing the current student object as a parameter properly sets the function’s
closure and solves the ambiguity resulting from executing remote calls in a loop.

214 CHAPTER 8 Managing asynchronous events and data
8.2 First-class asynchronous behavior with promises
The previous code example is definitely an improvement over the imperative asyn-
chronous programs you saw at the beginning of the chapter, but it’s far from being
functional. As with any functional program, you also seek other qualities like these:

■ Using composition and point-free programming
■ Flattening the nested structure into a more linear flow
■ Abstracting the notion of temporal coupling so that you don’t need to be con-

cerned with it
■ Consolidating error handling to a single function rather than multiple error

callbacks so that it’s not in the way of the code

Whenever I talk about flattening structures, composition, and consolidating behavior, a
design pattern should come to mind; this sounds like the job for a monad. Let’s explore
the Promise monad. Just to give you a rough idea, imagine a monad that wraps a long
computation (this isn’t the actual Promise interface, but a close analogy):

Promise.of(<long computation>).map(fun1).map(fun2);//-> Promise(result)

Unlike the other monads you learned about in this book, promises know to “wait” for
the long-running computation to complete before the mapped functions are run. In
this manner, this data type tackles head-on the problem of latency present in asyn-
chronous calls. Just like Maybe and Either document functions with uncertain return
values, promises make the notion of waiting for data honest and transparent; they also
have the benefit of providing a simpler alternative for executing, composing, and
managing asynchronous operations when compared to traditional callback-based
approaches.

 You can use promises to wrap a value or a function to be processed in the future
(if you have some Java experience, this is similar to the Future<V> object). A long-
running operation can be a complex calculation, fetching data from a database or a
server, reading a file, and so on. In the event of a failure, promises allow you to con-
solidate error-handling logic using approaches with a look and feel much like that
used with Maybe and Either. In a similar fashion, a promise can provide information
about the state of the work being done, so you can ask questions such as these: Has
data been fetched successfully? And were there any errors during the operation?

 As you can see in figure 8.5, at any point in time a promise can be in any of these
states: pending, fulfilled, rejected, or settled. It begins with a status of pending (also
called unresolved). Depending on the outcome of the long-running operation, the
promise can move into either fulfilled (in case resolve is called) or rejected (in case
reject is called). Once a promise has been fulfilled, it can notify other objects (con-
tinuations or callbacks) that its data has arrived; or, in the case of errors, it can invoke

215First-class asynchronous behavior with promises
any failure callback function that you registered with it. At this point, the promise is
said to be in the settled state.

 Promises allow you to reason about your programs more effectively and to cut
through tangled and tightly coupled callbacks. Just as Maybe was used to eliminate the
number of nested if-else conditions resulting from null-checks in your code,
Promise can be used to convert a series of nested callback functions into a sequence
of actions, similar to a monad’s map functor.

 ES6 has adopted the Promises/A+ standard, which is an open standard for the
interoperability of JavaScript promises across browser manufacturers. The reference
document can be found at https://promisesaplus.com; I encourage you to read it to
learn more about the intricacies of this protocol as well as the terminology. At a basic
level, here’s how you can construct a Promise object:

var fetchData = new Promise(function (resolve, reject) {

 // fetch data async or run long-running computation

 if (<success>) {
resolve(result);

 }
 else {

reject(new Error('Error performing this operation!'));
 }
});

The promise constructor takes a single function (called the action function) that
wraps the asynchronous operation; it takes two callbacks (you can think of them as
continuations), resolve and reject, to be invoked in cases where the promise is

FulfilledPromise
wrapped into

Rejected

Async operation

Pending

Async operation

Run long-running
operation

resolve(val)

reject(error)

settled

Invoked when the
promise is fulfilled

Invoked in case
operation fails

Figure 8.5 How an async operation is wrapped in a Promise and provided with two callbacks: one for resolve
and another for reject. The promise begins with a status of pending and then is either fulfilled or rejected,
invoking the function resolve or reject, respectively, before moving into the settled state.

https://promisesaplus.com

216 CHAPTER 8 Managing asynchronous events and data

n

either fulfilled or rejected, respectively. Notice the strong influence of the Either
design pattern as well. Let’s look at a quick example using promises in conjunction
with the simple Scheduler from chapter 4:

var Scheduler = (function () {
 let delayedFn = _.bind(setTimeout, undefined, _, _);

 return {
delay5: _.partial(delayedFn, _, 5000),
delay10: _.partial(delayedFn, _, 10000),
delay: _.partial(delayedFn, _, _)

 };
})();

var promiseDemo = new Promise(function(resolve, reject) {
 Scheduler.delay5(function () {

resolve('Done!');
 });
});

promiseDemo.then(function(status) {
 console.log('After 5 seconds, the status is: ' + status);
});

Just like a monad’s map, promises provide a mechanism to apply transformations against
a value that doesn’t exist yet—a value in the future.

8.2.1 Future method chains

The Promise object defines a then method (analogous to a functor’s fmap), which
applies an operation on a value returned in a promise and closes it back into a Promise.
Similar to Maybe.map(f), Promise.then(f) can be used for chaining data transforma-
tions as well as joining functions in time, abstracting the use of temporal coupling
among your functions. With this, you can chain multiple levels of dependent asynchro-
nous behavior linearly without creating new nested levels, as seen in figure 8.6.

Schedules a delayed
function to simulate a
long-running operatio

Resolves
the promise

The promise is
resolved after
5 seconds.

Promise

Async operation

then

Promise

Async operation2

Promise

Async operation3

then

let future_value =

Each operation is invoked in sync.

The resulf of each operation is
passed-on to the next.

Figure 8.6 A sequence of chained promises joined via the then method. Each then clause is executed serially
with one promise value after the next as soon as each is fulfilled.

217First-class asynchronous behavior with promises
The then method takes two optional arguments: a callback for success and another
for error. Providing error callbacks into each then block is ideal for reporting detailed
errors, but you can also use a series of success callbacks and defer all error-handling
logic to a single catch method at the end. Before you begin chaining promises, let’s
refactor getJSON to take advantage of Promise—known as promisifying a function.

var getJSON = function (url) {
 return new Promise(function(resolve, reject) {

let req = new XMLHttpRequest();
req.responseType = 'json';
req.open('GET', url);
req.onload = function() {

if(req.status == 200) {
let data = JSON.parse(req.responseText);
resolve(data);

}
else {

reject(new Error(req.statusText));
}

};
req.onerror = function () {

if(reject) {
reject(new Error('IO Error'));

}
};
req.send();

 });
 };

Promisifying your APIs is good practice. It makes working with your code a lot easier
than with traditional callbacks. Because promises are designed to wrap any type of
long-running operation, not just fetching data, they can be used with any object that
implements a then method (known as a thenable). Soon, all JavaScript libraries will
incorporate promises into their functions.

Listing 8.5 Promisifying getJSON

Promises with jQuery
If you’re a jQuery user, you’ve probably interacted with promises already. jQuery’s
$.getJSON operation (and any variation of the JQuery $.ajax calls) returns its own
Deferred object (a nonstandard version of a Promise), which implements the Prom-
ise interface and has a then method. Hence, you can use Promise.resolve() to
treat the Deferred object as a Promise:

Promise.resolve($.getJSON('/students')).then(function () ...);

This object is now a thenable and used just like any promisified object. I chose to
implement my own getJSON in listing 8.5 to illustrate the process of refactoring an
API call to use promises.

Called when the
AJAX function
returns

If the response is
successful (200
response code),
resolves the promise

Rejects the promise if the
response code is different
than 200 or there was an
error with establishing a
connection

Sends a remote
request

218 CHAPTER 8 Managing asynchronous events and data
First let’s go over a simple example that fetches student data from the server using this
new promise-based getJSON, and then you’ll incorporate the call to fetch grades so
that you can see the chained promises:

getJSON('/students').then(
 function(students) {

console.log(R.map(student => student.name, students));
 },
 function (error) {

console.log(error.message);
 }
);

Now, instead of continuation passing, you’ll refactor listing 8.2 with a superior solu-
tion based on promises. Here’s the code from listing 8.2 once more:

getJSON('/students',
 function (students) {

students.sort(function(a, b){
if(a.ssn < b.ssn) return -1;
if(a.ssn > b.ssn) return 1;
return 0;

});
for (let i = 0; i < students.length; i++) {

let student = students[i];
if (student.address.country === 'US') {

getJSON(`/students/${student.ssn}/grades`,
function (grades) {

showStudents(student, average(grades));
},
function (error) {

console.log(error.message);
});

}
}

},
function (error) {

console.log(error.message);
 }
);

The functional approach in listing 8.6 makes the following changes:

■ Instead of nesting asynchronous calls, chain them together using then and use
the Promise monad to abstract out asynchronous parts of the code.

■ Remove all variable declarations and mutations in favor of lambda functions.
■ Take advantage of Ramda’s curried functions to create succinct data-transfor-

mation steps like sorting, filtering, and mapping.
■ Consolidate error-handling logic into a final catchall function.
■ Lift the data into an IO monad to write data to the DOM in a side effect–free manner.

219First-class asynchronous behavior with promises

Re
stude

resi
N
ent
.
ct

getJSON('/students')
 .then(hide('spinner'))
 .then(R.filter(s => s.address.country == 'US'))
 .then(R.sortBy(R.prop('ssn')))
 .then(R.map(student => {

return getJSON('/grades?ssn=' + student.ssn)
.then(R.compose(Math.ceil,

forkJoin(R.divide, R.sum, R.length)))
.then(grade =>
IO.of(R.merge(student,
{'grade': grade}))
.map(R.props(['ssn', 'firstname',

'lastname', 'grade']))
.map(csv)
.map(append('#student-info')).run())

);
 }))
 .catch(function(error) {

console.log('Error occurred: ' + error.message);
 });

Because promises remove the details of handling asynchronous calls, you can create
programs that feel as if every function executes one after the other, without any wait
time or knowledge that you’re requesting data from an external server; promises hide
the asynchronous flow but emphasize the notion of time with then. In other words,
you could just as easily swap getJSON(url) with a promisified local storage call, say
getJSON(db), and your code would work exactly the same. This level of flexibility is
known as location transparency. Also notice that the code has a point-free style. Figure 8.7
illustrates the behavior of this program.

 The code in listing 8.6 fetches each student and appends them to the DOM one at
a time. But by serializing operations to fetch grades, you’re losing some precious time.
Promise also has the ability to take advantage of the browser’s multiple connections to
fetch multiple items at once. Consider a slight variation to this problem. Suppose that
for the same set of students, you want to compute their total average grade. In this
case, it doesn’t matter in which order you fetch the data or which requests arrive first,
so you can do it concurrently. For this, you use Promise.all() as shown next.

Listing 8.6 Fetching student and grade data with asynchronous calls

Hides the spinner. Because the
function doesn’t return a value, the
value enclosed in the promise is
passed into the next then.

moves
nts not
ding in
the US

Sorts the
remaining

objects
by SSN

Maps another getJSO
request for each stud
object to fetch grades
For each student obje
fetched, separate
promise objects take
care of each result.

Uses functional
combinators and
Ramda functions to
compute the average

Uses the IO monad to
append the student
and grade information
to the DOM

220 CHAPTER 8 Managing asynchronous events and data

Co
the

Us
m

th
const average = R.compose(Math.ceil,
 forkJoin(R.divide, R.sum, R.length));

getJSON('/students')
 .then(hide('spinner'))
 .then(R.map(student => '/grades?ssn=' + student.ssn))
 .then(gradeUrls =>

Promise.all(R.map(getJSON, gradeUrls)))
 .then(R.map(average))
 .then(average)
 .then(grade => IO.of(grade).map(console.log).run())
 .catch(error => console.log('Error occurred: ' + error.message));

Using Promise.all takes advantage of the browser’s ability to download multiple
things at once. The resulting promise resolves as soon as all promises in the iterable
argument have resolved. Listing 8.7 brings together two basic components of func-
tional code: splitting a program into simple functions and then composing them
together via a monadic data type that orchestrates the program’s entire execution.
Figure 8.8 illustrates what’s happening.

Listing 8.7 Fetching multiple items at once with Promise.all()

getJSON .then .then .then

map

getJSON .then .then

.catch

Fetch students Hide spinner
Create fetch
grade URLs

Return collection
of URLs

Invoke each promises
in sequence

Obtain avg grade
of each student

Fetch grades for
each student

Append to the DOM Report any errors

getJSON .then .then

getJSON .then .then

1

2

3

Figure 8.7 The flow of behavior through the chained use of promises. Each thenable block contains a function that
transforms the data passed through it. Although this program is bug-free and has all the desired functional qualities,
it’s inefficient because it uses a waterfall sequence of getJSON requests to fetch each student’s grades.

Average is pulled into a
separate function because
it’s used more than once.

Downloads all
student URLs
concurrently

mputes
 average

grade
for each
student

Computes the total
average of the classes the IO

onad to
write the
values to
e console

221First-class asynchronous behavior with promises
But monads aren’t effective only for forming method chains. As you learned in previ-
ous chapters, they’re also effective when used with composition.

8.2.2 Composing synchronous and asynchronous behavior

When you think of the way inputs and outputs of composed functions are linked
together, your intuition tells you that these functions must be executing linearly one
after the other. But using promises, you can execute functions that are separated in
time, while still preserving the look of an otherwise synchronous program made up of
functions that compose. This concept is a bit mind-bending to grasp, so I’ll explain
with an example.

 Throughout the code examples in the book, you’ve used a synchronous version of
find(db, ssn) to implement showStudent. To make things easier, you assumed find
was synchronous. Now you’ll implement the actual asynchronous version that relies
on the browser’s local store using IndexedDB, which can be to used to store objects
mapped by a certain key (SSN). If you’ve never used this API, don’t worry. Because you
use promises to implement find, as shown in the following listing, the important
thing to understand here is that if a student object exists, the promise will resolve
with that object; otherwise, it will be rejected.

getJSON .then .then .then

[all]

getJSON

getJSON

getJSON

.then .then .then .catch

Fetch students Hide the spinner
Create fetch-
grade URLs

Return the collection
of URLs

Invoke concurrent
promises for each URL

Obtain a grade average
for each student

Fetch grades for
each student

Obtain the grade average
for entire class

Write the total grade
average to the DOM

Report any errors

Figure 8.8 The flow of behavior through the chained use of linear as well as concurrent promises with
Promise.all(). Each thenable block contains a function that transforms the data passed through it. This
program is efficient because it can spawn several parallel connections to fetch all the data at once.

222 CHAPTER 8 Managing asynchronous events and data
// find :: DB, String -> Promise(Student)
const find = function (db, ssn) {
 let trans = db.transaction(['students'], 'readonly');
 const store = trans.objectStore('students');
 return new Promise(function(resolve, reject) {

let request = store.get(ssn);
request.onerror = function() {

if(reject) {
reject(new Error('Student not found!'));

}
};
request.onsuccess = function() {

resolve(request.result);
};

 });
};

I’ve omitted the details of setting up the db object because they’re not relevant to this
discussion. You can learn how to initialize and use the indexed local store API here:
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API. What you’ll
learn from reading this document is that the APIs are all asynchronous—rely on call-
back passing—for reading and writing to storage. But how can you compose functions
together that execute at different moments in time? Until now, the find function has
always been synchronous. Luckily, promises abstract the execution of asynchronous
code so that composing functions with promises is equivalent to composing functions
in the future, with not much change to the code. Before you implement the code, let’s
create a few helper functions:

// fetchStudentDBAsync :: DB -> String -> Promise(Student)
const fetchStudentDBAsync = R.curry(function (db, ssn) {
 return find(db, ssn);
});

// findStudentAsync :: String -> Promise
const findStudentAsync = fetchStudentDBAsync(db);

// then :: f -> Thenable -> Thenable
const then = R.curry(function (f, thenable) {
 return thenable.then(f);
});

// catchP :: f -> Promise -> Promise
const catchP = R.curry(function (f, promise) {
 return promise.catch(f);
});

// errorLog :: Error -> void
const errorLog = _.partial(logger, 'console', 'basic',
 'ShowStudentAsync', 'ERROR');

Listing 8.8 find function using the browser’s local store

Wraps the result
of the fetch task
into a promise

In the event of a
failure finding the
object in the store,
rejects it

If the object is found,
resolves it and passes the
matching student object

Curries the datastore
object so you can
include this function
into the composition

Enables chaining operations
on thenable types (objects that
implement a then method,
such as Promise)

Provides error logic
for a Promise object

Creates a console
error logger

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

223First-class asynchronous behavior with promises
Using these functions with R.compose produces the code in the next listing.

const showStudentAsync = R.compose(
catchP(errorLog),
then(append('#student-info')),
then(csv),
then(R.props(['ssn', 'firstname', 'lastname'])),
chain(findStudentAsync),
map(checkLengthSsn),
lift(cleanInput));

Here you can really see the power of composition with promises. As figure 8.9 shows,
when findStudentAsync runs, the entire program waits for the asynchronous func-
tion to return to the caller with data, in order to proceed to execute the rest of the
functions. The promise in this case acts as a gateway into the asynchronous part. It’s
also declarative in that nothing in this program reveals the internal behavior of the
asynchronous nature of the function or that callbacks are being used. Thus, compose
can still be used to orchestrate point-free programs that glue together functions that
won’t execute at the same time, but rather in the future, showing its true color as a
functional combinator.

 I added error-handling logic as well; running this program with an existing SSN
showStudentAsync('444-44-4444') successfully appends the student record to the

Listing 8.9 Asynchronous version of showStudent

Catch-all clause in
case of errors

Using then is equivalent to
a monad’s map function.

Point of inflexion where you chain the
synchronous to the asynchronous
code (explained later)

Promise

Sync
control flow

chain

cleanInput

checkLengthSsn

findStudentAsync

Async
control flow

map

map

then

R.props
then

csv
then

append

Fulfilled Rejected

errorLog
catch

Async

Figure 8.9 When composing synchronous code with asynchronous behavior, there’s a point of
inflexion in the program where the code shifts into a time-bound adjacent sequence of events that
happen within the confines of the promise type.

224 CHAPTER 8 Managing asynchronous events and data
page. Otherwise, if the promise is rejected, the error is safely propagated throughout
the program until the catch clause prints the following:

[ERROR] Error: Student not found!

This program is certainly complex, yet you were able to preserve its functional style by
combining many concepts learned throughout this book: composition, higher-order
functions, monads, containerization, mapping, chaining, and others. Furthermore,
this notion of a program waiting or yielding for data to become available is such a com-
pelling concept that it has been introduced as a first-class citizen in ES6 JavaScript, as
you’ll see next.

8.3 Lazy data generation
One of ES6’s most powerful features is the ability of functions to cooperate with others
by pausing to provide data without necessarily running to completion. This brings
many (possibly infinite) opportunities for functions to become vehicles for lazily pro-
ducing data instead of having to process massive data structures all at once.

 On one hand, you can have large collections of objects that are transformed
according to business rules (you’ve done this all along with map, filter, reduce, and
others); on the other, you can specify rules that govern how data should be created.
For instance, the function x => x * x, in the mathematical sense, is nothing more than
a specification for all squared numbers (1, 4, 9, 16, 25, and so on). With some special
syntax, this is known as a generator.

 A generator function is a language-level artifact defined with the function* nota-
tion (yes, a function with an asterisk). This new type of function has the unique qual-
ity that it can be exited using the new keyword yield and later reentered having its
context (all local variable bindings) saved across reentrances. If you’re not familiar
with a function’s execution context, see chapter 7 for more information. Unlike typi-
cal function calls, the ability to reenter a generator is possible because the execution
context of a generator function can be temporarily paused and then resumed at will.

 Lazily evaluated languages can generate lists of arbitrary size as required by the
program. If JavaScript were lazily evaluated, you could theoretically do something like
the following:

R.range(1, Infinity).take(1); //-> [1]
R.range(1, Infinity).take(3); //-> [1,2,3]

This is conceptual, of course. As you learned in chapter 7, JavaScript evaluates func-
tions eagerly, so the calls to R.range(1, Infinity) will fail to complete and will
overflow the browser’s function stack. Generators provide lazy behavior through an
internal iterator object that’s created when the generator function is called. The
iterator serves data to the caller on demand on every call to yield, as shown in fig-
ure 8.10.

225Lazy data generation
Let’s go over a quick example that the takes the first three elements without attempt-
ing to produce an infinite list of numbers:

function *range(start = 0, finish = Number.POSITIVE_INFINITY) {
 for(let i = start; i < finish; i++) {

yield i;
 }
}

const num = range(1);
num.next().value; //-> 1
num.next().value; //-> 2
num.next().value; //-> 3

// or

for (let n of range(1)) {
 console.log(n);
 if(n === threshold) {

break;
 }
}// -> 1,2,3,...

With generators, you can implement the lazy program to take a certain number of
elements from an infinite set:

function take(amount, generator) {
 let result = [];
 for (let n of generator) {
 result.push(n);
 if(n === amount) {

break;
 }
 }
 return result;
}
take(3, range(1, Infinity)); //-> [1, 2, 3]

for (let n of range(1, Infinity)) {

}

yield
next

range*

Generator pauses
waiting for next call.

1

3

2

console.log(n);

Figure 8.10 Executing the range generator
in a for..of loop. Every iteration of the loop
prompts the generator to pause and yield new
data. Hence, generators have semantics
similar to those of an iterator.

Returns back to the caller
but remembers the state of
any local variable bindings

A generator is an iterable type, meaning it can be
placed in loop blocks just like any array (more on
this later). ES6 introduces a new looping construct,
for..of, to be used with generators.

Checks a threshold so
the program doesn’t
loop infinitely

226 CHAPTER 8 Managing asynchronous events and data
With a few limitations, generators behave much like any standard function call. You
can pass arguments to them, and perhaps a function, to drive the nature of the gener-
ated values:

function *range(specification, start = 0,
 finish = Number.POSITIVE_INFINITY) {

 for(let i = start; i < finish; i++) {
yield specification(i);

 }
}

for (let n of range(x => x * x, 1, 4)) {
 console.log(n);
}// -> 1,4,9,16

Another quality of generator functions is that they can be used recursively.

8.3.1 Generators and recursion

Just like any function call, generators can be called from other generators. This is use-
ful in cases where you want to create a flattened view of a nested set of objects, which
is ideal when iterating over trees. Because generators can be looped over with
for..of, delegating to another generator is similar to merging two collections and
iterating over the entire thing. Recall the apprentice graph from chapter 3, shown
again in figure 8.11.

You can easily model the data included in the branches of this tree using simple gen-
erators like so (I’ll show the printed result of running this program later):

function* AllStudentsGenerator(){
yield 'Church';

yield 'Rosser';
yield* RosserStudentGenerator();

Applies the specification
function to each value
generated

A generator behaves like any higher-
order function that can receive
arguments to apply specialized behavior.
In this case, you tell the generator to
produce squared numbers.

Church

Rosser

Mendelson Sacks

Turing Kleene

Gandy Nelson Constable

Figure 8.11 Revisiting the apprentice graph from chapter 3, where each node
represents a student object and each line represents a “student-of” relationship

Uses yield* to delegate
to another generator

227Lazy data generation
yield 'Turing';
yield* TuringStudentGenerator();

yield 'Kleene';
yield* KleeneStudentGenerator();

}

function* RosserStudentGenerator(){
yield 'Mendelson';
yield 'Sacks';

}

function* TuringStudentGenerator(){
yield 'Gandy';
yield 'Sacks';

}

function* KleeneStudentGenerator(){
yield 'Nelson';
yield 'Constable';

}

for(let student of AllStudentsGenerator()){
 console.log(student);
}

Because recursion is such an integral part of functional programming, I also want to
demonstrate that despite the special semantics behind generators, they behave much
like standard function calls, which can delegate to themselves. Here’s a simple tra-
versal of the same tree (recall that each node contains a Person object), this time
using recursion:

function* TreeTraversal(node) {
 yield node.value;
 if (node.hasChildren()) {

for(let child of node.children) {
yield* TreeTraversal(child);

}
 }
}

var root = node(new Person('Alonzo', 'Church', '111-11-1231'));

for(let person of TreeTraversal(root)) {
 console.log(person.lastname);
}

Running this code produces the same output as previous: Church, Rosser, Mendelson,
Sacks, Turing, Gandy, Kleene, Nelson, Constable. As you can see, control is given to
the other generators and then, once completed, returned to the caller in the exact

You can interleave other
generator data with this.

The looping mechanism
iterates just as if it were
one big generator.

Uses yield* to
delegate back
to itself

Recall that the tree root
object from chapter 3 starts

at the Church node.

228 CHAPTER 8 Managing asynchronous events and data
same spot where it left off. From the for..of loop point of view, however, it just
calls an internal iterator until it runs out of data and doesn’t know recursion is even
taking place.

8.3.2 The Iterator protocol

Generators are closely tied to another ES6 artifact called iterators, which is the reason
you can loop over generators like any other data structure (such as arrays). Behind
the scenes, a generator function returns a Generator object that conforms to the iter-
ator protocol; this means it implements a method called next() that returns a value
resulting from using the yield keyword. This object has the following properties:

■ done—Has the value true if the iterator is passed the end of the sequence. Oth-
erwise, a value of false means the iterator was able to produce another value in
the sequence.

■ value—Any value returned by the iterator.

This is enough for you to understand how generators work behind the scenes. Let’s
look at the range generator again, implemented in a raw format:

function range(start, end) {

 return {
 [Symbol.iterator]() {

return this;
 },
 next() {

if(start < end) {
return { value: start++, done:false };

}
return { done: true, value:end };

 }
 };
}

With this implementation, you can create generators to produce any kind of data that
governs a certain pattern or specification. Here’s the squares generator, for instance:

function squares() {
 let n = 1;
 return {
 [Symbol.iterator]() {

return this;
 },
 next() {

return { value: n * n++ };
 }
 };
}

Indicates that the returned
object is iterable (implements
the Iterator protocol)

Implements the main logic for
this generator. If there’s any
more data to generate,
returns an object with the
yielded value and sets the
done flag to false; otherwise,
sets the done flag to true.

229Functional and reactive programming with RxJS
For more details about working with iterators and iterables, please visit https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols.
With the internal @@iterator property, many things in JavaScript can be treated as
iterable objects. You already expect arrays to work this way:

var iter = ['S', 't', 'r', 'e', 'a', 'm'][Symbol.iterator]();
iter.next().value; // S
iter.next().value; // t

But even strings can be iterated over:

var iter = 'Stream'[Symbol.iterator]();
iter.next().value// -> S
iter.next().value// -> t

I want to call out the idea of thinking about data as streams that, when probed, pro-
duce discrete sequences of events or values. As you’ve seen all along, these values flow
into a sequence of pure higher-order functions and transform into your desired out-
put. This way of thinking is vitally important and gives rise to another programming
paradigm (based on functional programming) called reactive programming.

8.4 Functional and reactive programming with RxJS
I’ve mentioned before that the nature of web applications has changed drastically,
mostly influenced by the AJAX revolution. As we push the limits of the web, users’
expectations become increasingly demanding of not just more data, but also more
interactivity. Applications need to be able to process user input coming from different
sources like button presses, text fields, mouse movements, finger gestures, voice com-
mands, and others, and it’s important to be able to interact with all of these in a con-
sistent manner.

 In this section, I’ll introduce a reactive library called Reactive Extensions for
JavaScript (RxJS) that you can use to elegantly combine asynchronous and event-
based programs (refer to the appendix for installation information). RxJS works in
ways similar to the functional promise-based examples you saw earlier in this chapter,
but it provides a higher degree of abstraction and many more powerful operations.
Before we get started, you must understand the concept of observables.

8.4.1 Data as observable sequences

An observable is any data object that you can subscribe to. Applications can subscribe to
asynchronous events emitted from reading a file, a web service call, querying a data-
base, pushing system notifications, handling user input, traversing a collection of ele-
ments, or even parsing a simple string. Reactive programming unifies all of these data
providers into a single concept called an observable stream, using the Rx.Observable

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols

230 CHAPTER 8 Managing asynchronous events and data
object. A stream is a sequence of ordered events happening over time. To extract its value, you
must subscribe to it. Let’s look at some examples:

Rx.Observable.range(1, 3)
 .subscribe(

x => console.log(`Next: ${x}`),
err => console.log(`Error: ${err}`),
() => console.log('Completed')

);

Running this code creates an observable sequence from a range of numbers that will
emit the values 1, 2, 3. Finally, it flags the completion of the stream:

Next: 1
Next: 2
Next: 3
Completed

Consider another example using the earlier squares generator function to populate
the stream of values (you add a parameter to generate a finite number of squares):

const squares = Rx.Observable.wrap(function* (n) {
 for(let i = 1; i <= n; i++) {

return yield Observable.just(i * i);
 }
});

squares(3).subscribe(x => console.log(`Next: ${x}`));

Next: 1
Next: 4
Next: 9

As you can see from these examples, you can work with any type of data in the exact same
manner using Rx.Observable, because it converts this data into a stream. Rx.Observable
wraps or lifts any observable object so that you can map and apply different functions
to transform the observed values into the desired output. Hence, it’s a monad.

8.4.2 Functional and reactive programming

The Rx.Observable object unites the world of functional and reactive programming.
It implements the equivalent of the minimal monadic interface you learned about in
chapter 5 (map, of, and join) as well as many methods specific to stream manipula-
tion. Here’s a quick example:

 Rx.Observable.of(1,2,3,4,5)
.filter(x => x%2 !== 0)
.map(x => x * x)
.subscribe(x => console.log(`Next: ${x}`));

 //-> Next: 1
Next: 9
Next: 25

The subscribe method expects three
callback functions: handle each element
in the sequence, exceptional termination,
and graceful termination.

Filters out
even numbers

231Functional and reactive programming with RxJS
To illustrate what’s happening behind the scenes, the diagram in figure 8.12 shows the
transformation.

 If you hadn’t just read a functional programming book, you would’ve felt that the
hardest part about reactive programming is learning to “think reactively.” But think-
ing reactively isn’t that different from thinking functionally, just with a different set of
tools; so half the battle is won. In fact, there’s so much overlap, that most of the docu-
mentation on reactive programming found on the web begins by teaching functional
programming techniques. Streams bring declarativeness and chained computations
into your code. Hence, reactive programming tends to resemble functional program-
ming, giving rise to the term functional reactive programming (FRP).

Now that you understand observables, let’s use RxJS to handle user input. When you
need to interact with and capture events from many different sources, you can easily
get into code that’s tangled and hard to read. Consider a simple example of reading
and validating an SSN field:

document.querySelector('#student-ssn')
 .addEventListener('change', function (event) {

let value = event.target.value;

Suggested reading
Reactive programming has been on the rise since 2013, so a sizeable amount of con-
tent is available related to it and FRP. My goal isn’t to teach you reactive program-
ming, but to demonstrate that reactive programming is really functional programming
applied to asynchronous and event-based problems.

If you wish to learn more about reactive programming and the FRP world, you can
check out Functional Reactive Programming (Manning 2016) by Stephen Blackheath
and Anthony Jones, which you can obtain at https://www.manning.com/books/
functional-reactive-programming. If you’re interested in learning about using RxJS
with functional programming, I recommend that you read RxJS in Action (Manning,
forthcoming 2017) by Paul Daniels and Luis Atencio, which you can begin reading
using the Manning Early Access Program (MEAP) at https://www.manning.com/
books/rxjs-in-action.

1 3 52 4

1 3 5
filter

1 9 25
map

Figure 8.12 The process
of applying functions
filter and map from an
observable sequence of
numbers

https://www.manning.com/books/functional-reactive-programming
https://www.manning.com/books/functional-reactive-programming
https://www.manning.com/books/rxjs-in-action
https://www.manning.com/books/rxjs-in-action

232 CHAPTER 8 Managing asynchronous events and data
value = value.replace(/^\s*|\-|\s*$/g, '');
console.log(value.length !== 9 ? 'Invalid' : 'Valid'));

});
//-> 444 Invalid
//-> 444-44-4444 Valid

Because the change event happens asynchronously, you’re forced to write all the busi-
ness logic in a single callback function. As you saw earlier in the chapter, this doesn’t
scale if you continue to pile on more event-handling code for every button, field, and
link on the page. Your only opportunity for reuse will be to refactor and pull out core
logic from the callback. How can you scale this so that your code’s complexity doesn’t
grow in proportion to adding more logic?

 Just as with asynchronous code, you can’t force functional programming to coop-
erate nicely with traditional event-based functions—both paradigms are diverse. The
same way promises solved the impedance mismatch between functional and asynchro-
nous functions, you need the layer of abstraction provided by Rx.Observable to
bridge the world of events to the functional world. This example code that listens for
change events fired over time as the user updates a student SSN input field can be
modeled as a stream (see figure 8.13).

With that in mind, you can refactor the previous imperative event-based code using
FRP, which means subscribing to the event and using pure functions to implement all
the business logic:

Rx.Observable.fromEvent(
 document.querySelector('#student-ssn'), 'change')

 .map(x => x.target.value)

 .map(cleanInput)

 .map(checkLengthSsn)

 .subscribe(

ssn => ssn.isRight ? console.log('Valid') : console.log('Invalid'));

4 44 444 444- 444-44-4444

No more data
Prints “Invalid”

Prints “Valid”

Events are spaced out serially overtime.

Figure 8.13 Shows the event values for SSN treated as an observable stream created from subscribing
to the change event of the student SSN input field

Subscribes to the
change event

Extracts the value
in the event

Applies functions to trim
and clean the SSN (from
previous chapters)

Checks whether the output
of the validation is an
Either.Right or Either.Left,
to determine if it’s valid

233Functional and reactive programming with RxJS

t
me
This code reuses the same functions from previous chapters, so the value passed in to
subscribe is wrapped in an Either containing Right(SSN) on a valid input or
Left(null) otherwise. RxJS excels at chaining linear asynchronous data flows to
handle events, but that’s not all. It also incorporates promises into its powerful APIs,
so you can use one programming model for all things asynchronous. Let’s look at
that next.

8.4.3 RxJS and promises

RxJS can convert any Promises/A+–compliant object into an observable sequence.
This means you can wrap the long-running getJSON function so that, on resolution, its
value will be converted into a stream. Consider the example of showing a sorted list of
students who reside in the United States:

Rx.Observable.fromPromise(getJSON('/students'))
 .map(R.sortBy(R.compose(R.toLower, R.prop('firstname'))))
 .flatMapLatest(student => Rx.Observable.from(student))
 .filter(R.pathEq(['address', 'country'], 'US'))
 .subscribe(

student => console.log(student.fullname),
err => console.log(err)

);
// -> Alonzo Church

Haskell Curry

You can see that this code retains a lot of what you learned about promises, with a few
differences. Notice the centralized error-handling logic in subscribe. If the promise
can’t be fulfilled because the web service you’re accessing is down, it propagates the
error through and invokes the error-callback printing (this is proper for a monad):

Error: IO Error

Otherwise, the list of student objects is sorted (in this case, by first name) and passed
in to flatMapLatest, which converts the response object into an observable array of
students. Finally, you filter out students not residing in the United States from the
stream and print the results. The RxJS toolkit offers many more features, and you’ve
only just scratched the surface of what it can do. For more in-depth information, visit
https://xgrommx.github.io/rx-book.

 In this book, we tackled all different types of challenging JavaScript problems
using functional programming; these included processing collections, working with
AJAX requests, database calls, handling user events, and others. Now that you’ve
explored the theory in detail as well as programs that demonstrate real-world usage of

Case-insensitive
sort of all studen
objects by firstna

Converts the single
array of student
objects into an
observable
sequence of
students

Filters students not
living in the US

Prints the
results

https://xgrommx.github.io/rx-book

234 CHAPTER 8 Managing asynchronous events and data
these functional techniques, you grok the essence of thinking functionally and will soon
be intuitively applying it.

8.5 Summary
■ Promises provide a functional solution to callback-driven design, which has

plagued JavaScript programs for a long time.
■ Promises gives you the ability to chain as well as compose functions “in the

future,” abstracting out the low-level intricacies of temporally dependent code.
■ Generators take another approach to asynchronous code by providing pro-

gramming artifacts, backed by lazy iterators, that allow you to yield for data to
be available.

■ Functional reactive programming raises the level of abstraction of your pro-
grams so that you can focus on treating events as logically independent units.
This lets you focus on your task at hand instead of coping with complex imple-
mentation details.

appendix
JavaScript libraries

used in this book

Functional JavaScript libraries
Because JavaScript isn’t a pure functional language, you have to rely on the help of
third-party libraries that you can load into your project to emulate features, such as
currying, composition, memoization, lazy evaluation, immutability, and so on, that
are core in purer functional languages like Haskell. The libraries eliminate the
need for you to implement the features yourself, so that you can focus on writing
your business logic functions and delegate the orchestration of this code to these
libraries. This section lists the functional libraries used throughout this book.
These libraries are designed to do the following:

■ Fill in any gaps of standard JavaScript environments by providing additional
language constructs and high-level utility functions that encourage you to
write code using simple functions

■ When using JavaScript on the client, ensure that the functionality is consis-
tent across browser vendors

■ Abstract out the internals of functional programming techniques like curry-
ing, composition, partial evaluation, lazy evaluation, and others in a consis-
tent manner

For each library, I’ll include installation instructions for both browser and server
(Node.js) environments.

Lodash

This utility library is a fork of Underscore.js (http://underscorejs.org/), which has
been widely adopted by functional JavaScript programmers in the past, and it’s a
235

http://underscorejs.org/)

236 APPENDIX JavaScript libraries used in this book
dependency in important JavaScript frameworks like Backbone.js. Lodash continues
to track the Underscore APIs closely, but it’s been completely rewritten under the
hood to include additional performance enhancements. This book uses Lodash
mainly to construct modular function chains.

■ Version: 3.10.1
■ Home page: https://lodash.com/
■ Installation:

– Browser: <script src="lodash.js"></script
– Node: $npm i –-save lodash

Ramda

This utility library is designed specifically for functional programming, which facili-
tates the creation of function pipelines. All of Ramda’s functions are immutable and
side effect–free. In addition, all the functions have automatic currying, and its param-
eters are arranged to be convenient for currying and composition. Ramda also con-
tains property lenses, which are used in this book to read/write the properties of
objects in an immutable manner.

■ Version: 0.18.0
■ Home page: http://ramdajs.com/
■ Installation:

– Browser: <script src="ramda.js"></script>
– Node: $npm install ramda

RxJS

The Reactive Extensions for JavaScript implement a paradigm known as reactive pro-
gramming, which combines the best ideas of the observer pattern, iterator pattern, and
functional programming to yield a library that facilitates writing asynchronous and
event-based programs.

■ Version: 4.0.7
■ Parent project home page: http://reactivex.io/
■ Home page: https://github.com/Reactive-Extensions/RxJS
■ Installation:

– Browser: Download the needed packages from any JavaScript repository such
as www.jsdelivr.com/?query=rxjs. These are the necessary packages for this
book: rx-async, rx-dom, and rx-binding.

– Node: $npm install rx-node

https://lodash.com/
http://ramdajs.com/
www.jsdelivr.com/?query=rxjs
http://reactivex.io/
https://github.com/Reactive-Extensions/RxJS

237Other libraries used
Other libraries used
This book also uses nonfunctional libraries to take care of some additional aspects of
software development like logging, testing, and static code analysis.

Log4js

Log4JavaScript is a client-side logging framework that follows the same “Log4X”
design of packages as other languages, such as Log4j (Java), log4php (PHP), and oth-
ers. This library is commonly used for enterprise-level logging, which is much more
powerful than the typical console.log.

■ Version: 1.0.0
■ Home page: http://stritti.github.io/log4js/
■ Installation:

– Browser: <script src="log4.js"></script>
– Node: $npm install log4js

QUnit

QUnit is a powerful, slim, easy-to-use JavaScript unit testing framework. It’s used by
popular projects such as jQuery and is capable of testing any generic JavaScript code.

■ Version: 1.20.0
■ Home page: https://qunitjs.com/
■ Installation:

– Browser: <script src="qunit-1.20.0.js"></script>
– Node: $npm install –-save-dev qunitjs

Sinon

Sinon.JS is a stub and mocking framework for JavaScript. In this book, it’s used in
conjunction with QUnit to augment the testing environment with a mocking context
and API.

■ Version: 1.17.2
■ Home page: http://sinonjs.org/
■ Installation:

– Browser: <script src="sinon-1.17.2.js"></script>
<script src="sinon-qunit-1.0.0.js"></script>

– Node: $npm install sinon
$npm install sinon-qunit

Blanket

Blanket.js is a code-coverage tool for JavaScript. It’s designed to complement your
existing JavaScript unit tests (QUnit tests) with additional code-coverage statistics.

http://stritti.github.io/log4js/
https://qunitjs.com/
http://sinonjs.org/

238 APPENDIX JavaScript libraries used in this book
Code coverage measures the percentage of lines that execute through your code in a
single pass of a unit test. It works in three phases:

1 Loads your source files
2 Instruments the code by adding tracking lines
3 Connects the hooks in the test runner to output coverage details

■ Version: 1.1.5
■ Home page: http://blanketjs.org/
■ Installation:

– Browser: <script src="blanket.js"></script>
– Node: $npm install blanket

JSCheck

JSCheck is a specification-driven (property-based) testing library for JavaScript written
by Douglas Crockford and inspired by Haskell’s QuickCheck project. From the descrip-
tion of the properties of a function, it generates random test cases that attempt to
prove those properties.

■ Home page: www.jscheck.org/
■ Installation:

– Browser: <script src="jscheck.js"></script>
– Node: $npm install jscheck

http://blanketjs.org/
www.jscheck.org/

index
Symbols

() operator 39
@@iterator property 229
+ (plus) operator 59
|| (OR) operator 189

A

abstracting loops 8
abstraction 26
acceptance tests 154
accumulator parameter 66
action function 41, 215
ad hoc types 90
additionalVars function 46–47
address property 127, 134
address variable 48
address.city property 67
address.zip property 38
addToDom function 6
AJAX request 213
alternation (OR-combinator)

113–114
alternation functional

combinator 189–190
amount variable 46
append function 39, 82, 109
applyOperation function 40
arguments object 93, 182
arity 88–92
array comprehension 70
array extras 62
ArrayList class 60
Array.map() function 8
Array.prototype.map 82

Array.reverse() function 64
Array.sort() function 15, 40
arrow functions 8
arrows 105
ASCII characters 192
asterisk character 224
asynchronous applications,

reacting to complexity
of 19–21

asynchronous behavior 211
asynchronous events and

data 205–234
challenges of asynchronous

code 206–213
creating temporal depen-

dencies among
functions 207–208

falling into callback
pyramid 208–210

using continuation-passing
style 210–213

lazy data generation 224–229
generators and

recursion 226–228
iterator protocol 228–229

promises and 214–224
composing synchronous

and asynchronous
behavior 221–224

future method chains
216–221

RxJS and 233
RxJS (Reactive Extensions for

JavaScript) 229–234
data as observable

sequences 229–230

functional and reactive
programming 230–233

promises and 233
asynchronous server-side

calls 52
automatic currying 236

B

base cases 77
base variable 46
bind function 101, 130
binding, into delayed

functions 101–102
Blanket library 172–173,

237–238
blocked-scope variables,

emulating 52–53
Boolean values 86

C

cache 191
cachedFn function 192
call-by-need behavior 19
call-when-needed strategy,

implementing 191–199
call() method 39
callback hell 210
callback pyramid 208–210
callbacks 215
catch block 49, 119, 122
CC (cyclomatic

complexity) 177–178
chain function 73, 146–147,

190
239

INDEX240
chaining
functions 60–70

gathering results with
_.reduce 65–68

lambda expressions 61–62
removing unwanted ele-

ments with _.filter 68–70
transforming data with

_.map 62–64
methods 59–60

change event 232
changeToStartCase

function 143
checkLengthSsn function 107,

162, 169
checkType function 94
Christmas tree of doom 210
classical inheritance 25
cleanInput function 107, 162
closures, practical applications

of 50–53
emulating blocked-scope

variables 52–53
emulating private

variables 50–52
making asynchronous server-

side calls 52
code coverage, measuring effec-

tiveness through 172–179
measuring complexity of

functional code 177
measuring effectiveness of

testing functional
code 173–177

code examples 29
code-coverage tool 237
CollegeStudent object 25
commutative 158
comparator function 40
compatible functions 88–92

arity and 89–92
type-compatible

functions 88–89
complex widgets 102
complexity of functional code,

measuring 177
compose function 17, 160
composition 17
computeAverageGrade

function 160, 168–169
conjunctive operation 107
connected black-box

operations 59
console widget 102
consoleLog function 99

console.time() function 193
const keyword 32
context stack 181, 211
continuation-passing style. See

CPS
control flow

managing with functional
combinators 112–116

alternation (OR-
combinator) 113–114

fork (join)
combinator 115–116

identity (I-combinator) 112
sequence (S-combinator)

114–115
tap (K-combinator) 113

overview 58–59
coordinate object 34
coordinate.translate()

function 36
copy-on-write strategy 37
CopyOnWriteArrayList class 60
count function 104
counter variable 9, 14, 157
countWords function 104
CPS (continuation-passing

style) 210–213
createNewStudent function 189
csv function 162
current continuations 211
curried function evaluation

92–98
emulating function

factories 95–97
implementing reusable func-

tion templates 97–98
curry function 160
curry2 function 95
currying 12

function context stack
and 183–186

memorization and 196
cyclomatic complexity. See CC

D

data
functions as 75–76
transforming 62–64

data structures, recursively
defined 79

data-covered attribute 173
data-structure reuse 74
Date.now() function 9, 193
DB object 164, 196

db variable 11
declarative function chains

71–74
declarative, functional program-

ming as 7–9
decodeURIComponent

function 140
decomposition of complex

tasks 16–18
Deferred object 217
delayed functions, binding

into 101–102
dependencies, temporal

207–208
derived type 25
destructured assignment 92
done property 228
DoublyLinkedList class 60
doWork() function 48
_.drop function 191
_.dropRight function 191
_.dropRightWhile function 191
_.dropWhile function 191
duck typing 88
dummy methods 164

E

echo function 6
ECMAScript 24
effectiveness, measuring

through code
coverage 172–179

measuring complexity of func-
tional code 177

measuring effectiveness of
testing functional
code 173–177

Either monad
overview 162–164
recovering from failure

using 137–141
Either.Left structure 140
Either.Left type 164
Either.Right type 164
elementId variable 11
elements, removing

unwanted 68–70
Employee object 25
Empty container 129
empty frames 182
emulating

blocked-scope variables
52–53

private variables 50–52

INDEX 241
encapsulated types 112
equational correctness 13
error callbacks 209, 217
error-handling 118–121

problems with null-
checking 121

reasons not to throw
exceptions 119–120

with monads 132–141
consolidating null

checks with Maybe
132–137

recovering from failure
with Either 137–141

with try-catch 118–119
ES6 lambda expression 9
exception-handling blocks

120
explode function 104
expressions 8, 38
external dependencies,

mocking 158, 164–166
externally visible side

effects 10
extracting data 112

F

f function 89, 93
factorial function 200
factorial(4) function 200
factorial(100) function 199
factory method pattern 96
fadeIn function 127
failure, recovering from using

Either monad 137–141
Fantasy Land 141
fat-arrow functions 61
filter function 86, 126, 231
_.filter functional style 68–70
filters pattern 88
final keyword 32
find function 13, 222
findObject function 119
findStudent function 109, 119,

127, 164, 196–197
findStudent(ssn) function 95
findStudentAsync 223
findStudentsBy function 31
_.first function 78, 191
first-class citizens, functions

as 39–40
flags failures 171
flatMap function 130
flatMapLatest 233

fluent chains, processing data
using 18–19

fmap function 124–125, 130
fn parameter 66
Folktale 141
for loops 60
forEach function 52
fork (join) combinator 115–116
fork function 161
for...of loop 225–226
FP (functional programming)

as declarative 7–9
benefits of 16–22

encouraging decomposi-
tion of complex tasks
16–18

processing data using fluent
chains 18–19

reacting to complexity of
asynchronous
applications 19–21

importance of 5
overview of 5–7
preserving immutable

data 15–16
pure functions and 9–13
referential transparency and

substitutability 13–15
vs. object-oriented

programming 24–38
deep-freezing moving

parts 34–37
managing state of JavaScript

objects 31–32
navigating and modifying

object graphs with
lenses 37–38

treating objects as
values 32–34

FRP (functional reactive
programming) 21, 231

fulfilled promise 214
fullname() function 26–27
func1 parameter 66
func2 parameter 66
function context stack, currying

and 183–186
function interfaces 95
function keyword 51
function lifting 136
Function object 194
function pipelines 87–88

composing 102–112
coping with pure and

impure code 109–110

point-free programming
and 111–112

separating description
from evaluation
104–107

with functional
libraries 107–109

with HTML widgets
102–104

vs. method chains 85–88
function scope 48–49
function stack 211
function templates 95
Function type 39
functional awareness 16
functional combinators

112–116
alternation (OR-combinator)

113–114
fork (join) combinator

115–116
identity (I-combinator) 112
sequence (S-combinator)

114–115
tap (K-combinator) 113

functional optimizations
181–203

call-when-needed strategy,
implementing
191–199

execution of functions
181–187

challenges of recursive
code 186–187

currying and function
context stack 183–186

deferring using lazy
evaluation 188–191

memorization
applying to recursive

calls 197–199
currying and 196
decomposing to

maximize 196–197
memoizing computation-

ally intensive functions
192–195

overview 192
recursion and tail-call

optimization
199–203

functional programming. See FP
functional reactive program-

ming. See FRP
functional references 37

INDEX242
functions
as data 75–76
as first-class citizens 39–40
chaining 60–70

gathering results with
_.reduce 65–68

lambda expressions 61–62
removing unwanted ele-

ments with _.filter 68–70
transforming data with

_.map 62–64
compatible 88–92

arity and 89–92
type-compatible

functions 88–89
creating temporal dependen-

cies among 207–208
curried function

evaluation 92–98
emulating function

factories 95–97
implementing reusable

function templates
97–98

delayed, binding into
101–102

function methods 44
higher-order functions 40–42
types of function

invocation 43
See also functional optimiza-

tions
functions as data 76
functors 124–127
Future object 214

G

g function 89
generator function 224
Generator object 228
generators, recursion and

226–228
getAddress function 127
getCountry function 121, 135
getJSON function 52, 207, 212,

217, 233
$.getJSON operation 217
getOrElse function 135, 140
global context frame 182
global function 43
global scope, problems with 47
global variables 46–47
greedy evaluation 188
_.groupBy function 67

H

h1 function 6
half function 129
Haskell library 85, 167
head function 108
heterogeneous arrays 90
High Resolution Time API 193
higher-order function 18
HTML widgets, composing

function pipelines using
102–104

I

I-combinator 112
identity (I-combinator) 112
identity function 123, 126, 131,

149
if-else blocks 175, 177
if-else conditions 19, 68, 114,

215
IIFE (immediately invoked func-

tion expression) 51
immutability 3–4, 9, 21
immutable data, preserving

15–16
imperative code 72
imperative programming 7–8,

71
impure code

overview 109–110
separating pure from with

monadic isolation
161–164

increment() function 10, 13,
124, 157, 159, 163

IndexedDB 221
_.initial function 191
inner function 48
innerVar variable 47
input type 86
integration tests 154–155
inversion of control 208
IO monad 142, 149, 162,

218–220
isEmpty function 86
isEven function 191
_.isNull function 68
isolation 155
_.isUndefined function 68
isValid function 90
isValidSsn function 107
iterator protocol 224, 228–229,

236

J

JavaScript
libraries 235–238

Blanket 237–238
JSCheck 238
Lodash 235–236
Log4js 237
QUnit 237
Ramda 236
RxJS 236
Sinon 237

reasons for using 24
join (fork) combinator

115–116
join function 115, 130–131
jQuery object 18
JSC.array 168
JSCheck library 167, 169,

238
JSCheck.check 168
JSCheck.test 168
JSC.integer 171
JSC.integer(20) 168
JSC.number(90, 100) 169
JSC.on_fail 171
JSC.on_pass 171
JSC.SSN 171
Just(value) function 132

K

K-combinator 113

L

lambda expressions 8, 20, 22,
61–62

_.last function 191
last-in first-out. See LIFO
lastname() method 37
lazy data generation

224–229
generators and recursion

226–228
iterator protocol

228–229
lazy evaluated programs 19
lazy evaluation, deferring

using 188–191
lazy function chains 71–74
lazy values 143
length property 39
let keyword 212
lexical scope 45, 94

INDEX 243
libraries, JavaScript 235–238
Blanket 237–238
JSCheck 238
Lodash 235–236
Log4js 237
QUnit 237
Ramda 236
RxJS 236
Sinon 237

LIFO (last-in first-out) 181
LinkedList class 60
list comprehension 70
List interface 60
list processing 62
local variables 182
location transparency 219
Lodash library 235–236
Lodash wrapper object 86
Lodash.js library 62
Log4js library 97, 237
logger function 97, 183–185
long-running operation 214
longest function 187
loop counter 50

M

map function 86, 126, 130, 147,
231

_.map functional style 62–64
map functor 215
Maybe function 214
Maybe monad

consolidating null checks
using 132–137

overview 162
Maybe.fromNullable 135
Maybe.Nothing structure 140
memoize function 193
memorization 190–191

applying to recursive calls
197–199

currying and 196
decomposing to maximize

196–197
memoizing computationally

intensive functions
192–195

overview 192
meta-functions 44
method cascading 59, 81
method chains

chaining methods
together 86–87

vs. function pipelines 85–88

method fusion 74
methods, chaining 59–60
mixins 75–76
mock objects 164
modularity 16–17, 20, 22
Module pattern 51
monadic chains and

compositions 144
monadic type 130
monads 107, 126

error handling with 132–141
consolidating null

checks with Maybe
132–137

recovering from failure
with Either 137–141

interacting with external
resources using IO
monad 141–144

overview 127–132
separating pure from impure

with monadic isolation
161–164

multiargument functions 98
MyModule object 51
myVar variable 49

N

name property 39
name-resolution order 48
negate function 44
nested functions 45
neutral functors 131
next() function 228
nodes 80
non-curried function 92
Nothing()function 132
null checks, consolidating

using Maybe monad
132–137

null function 111, 118, 120,
126

null-checking
overview 215
problems with 121

Number type 100

O

object literal interface 33
Object.freeze() function 34, 36
objects

managing state of 31–32
treating as values 32–34

observables 21
observer pattern 236
one-line expressions 62
OOP (object-oriented program-

ming), vs. functional
programming 24–38

deep-freezing moving
parts 34–37

managing state of JavaScript
objects 31–32

navigating and modifying
object graphs with
lenses 37–38

treating objects as values
32–34

operator function 40
OR (||) operator 189
OR-combinator 113–114
orElse function 140
output type 86

P

p parameter 61
parameter binding, binding

into delayed functions
101–102

partial application 98–102
partial function 101
pending status 214
Performance API 193
performance.now() function

193
Person attribute 35, 60, 65–66,

69, 72, 227
pipe function 110
pipelines. See function pipelines
pipelining 85
pipes pattern 88
pluck function 108, 191
plus (+) operator 59
point-free coding 110–112
polymorphic functions 27
predicate function 68–69
printMessage function 7
printPeople function 41
private variables, emulating

50–52
procedural programming 7
product type 140
programmable commas 147
programming to interfaces 105
Promise monad 214, 218
Promise.all() function 219,

221

INDEX244
Promise.resolve() function 217
promises 214–224

composing synchronous and
asynchronous behavior
221–224

future method chains and
216–221

RxJS (Reactive Extensions
for JavaScript) and
233

Promises/A+ standard 215
promisifying 217
proper tail calls 202
property lenses 236
property-based testing 151, 154,

166–172, 179
prototypal relationship 25
prototype property 182
pseudo-block scope 49–50
pseudo-private variables 33
pure code

overview 109–110
separating from impure with

monadic isolation
161–164

pure functions 9–13, 59,
70–71

purity 13

Q

QuickCheck project 167,
238

QUnit library 155, 173, 237

R

R variable 94
Ramda library 37, 94, 236
Range Error: Maximum Call

Stack Exceeded 186
range function 188
range generator 225
R.compose function 106, 110,

126, 223
R.divide function 160
Reactive Extensions for

JavaScript. See RxJS
reactive programming 4,

230–233, 236
readDom 143
receiving function 88
recovering from failure,

using Either monad
137–141

recursion 227
applying memorization to

recursive calls 197–199
generators and 226–228
overview 77
recursively defined data

structures 79
tail-call optimization

and 199–203
thinking recursively 77–79

recursive addition 78
recursive algorithms 199
recursive cases 77
recursive code, challenges

of 186–187
_.reduce function 65–68, 78
_.reduceRight function 67
referential transparency 13–15,

17
_.reject function 191
rejected promise 214
remembers function 198
_.rest function 78, 191
results, gathering 65–68
_.reverse function 191
rewriting 13
R.head function 107
R.identity function 125, 149,

161
R.length function 160
rot13 function 192, 195
R.pipe function 110
R.pluck function 107
R.prop function 107, 135
R.reverse function 107
R.set function 37
R.sortBy function 107
R.sum function 160
R.tap function 161
run function 7–8, 13
rx-async package 236
rx-binding package 236
rx-dom package 236
RxJS (Reactive Extensions

for JavaScript)
229–234

data as observable
sequences 229–230

functional and reactive
programming
230–233

promises and 233
RxJS library 184
Rx.Observable 230, 232
R.zip function 107

S

S-combinator 114–115
safeFindObject function 139,

164, 196
safeFindStudent function

135–136
Scheduler function 101
scope chain 182
scopes

function scope 48–49
global scope, problems

with 47
pseudo-block scope 49–50

sequence (S-combinator)
114–115

setInterval function 101
setTimeout function 101
settled promise 215
shortcut fusion 190–191
showStudent function 11, 16,

109–110, 142, 146, 156,
162–163, 197

Sinon library 237
sinon object 164
Sinon.JS plug-in 164
size function 14
_.slice function 191
_.some function 68
sort() function 40
SQL-like data 75–76
square function 191
squares generator 228, 230
stack 181
statelessness 9
statements 38
static scope 45
strict mode 29
String type 100
StringPair type 92
stubs 164
student object 212–213, 221,

226
student variable 48
student-info panel 127
students object 207
substitutability 13–15
substitution 13
substring method 59
subtasks 16
subtypes 25
sum function 14
surface area 196
synchronous behavior 211
synchronous code 223

INDEX 245
T

tacit programming 111
tail position 79, 199
tail-call elimination 199
tail-call optimization. See TCO
_.takeRight function 191
_.takeRightWhile function

191
_.takeWhile function 191
tap (K-combinator) 113
TCO (tail-call

optimization) 199–203
temporal cohesion 207
temporal coupling 207
temporal dependencies,

among functions,
creating 207–208

terminating condition 77, 79
testing 153–179

challenges of testing impera-
tive programs 155–158

dependency on shared
resources leads to
inconsistent results 157

difficulty identifying and
decomposing tasks
155–157

predefined order of
execution 158

functional programming's
influence on unit
tests 154–155

measuring effectiveness
through code
coverage 172–179

measuring complexity
of functional code
177

measuring effectiveness
of testing functional
code 173–177

of functional code 159–166
focusing on business logic

instead of control
flow 160–161

mocking external
dependencies 164–166

separating pure from
impure with monadic
isolation 161–164

treating function as black
box 159–160

property-based 166–172
then block 217
then method 216–217
thenable 217
this keyword 10
thisArg function 44
thunk 203
toLetterGrade function 160
toLowerCase method 59
too much recursion error 186
toString method 33, 41
trace statements 147
traits 76
trampolining 202–203
transforming data 62–64
transparency, referential

13–15
Tree.map function 82–83
trees 81
trim function 110
true verdict 169
try-catch structure 118–119
Tuple object 91
tuples 90–92, 103
type constructor 130
type systems 88
type-compatible functions

88–89, 105
TypeError 136, 144

U

unary functions 93, 98
undefined argument 100
Undesrscore.js project 62, 235
_.uniq function 72
unit function 130
unit tests, functional program-

ming’s influence on
154–155

units of modularity 155
units of work 16, 24, 38
unresolved status 214

unsafe values, wrapping
122–124

usable result 38

V

Value Object pattern 33
value property 228
value() function 73, 190
values 41

treating objects as 32–34
unsafe, wrapping of 122–124

variableObject property 182
variables

blocked-scope 52–53
private 50–52

verdict function 169–170
void functions 38, 113

W

_.where 191
window object 10
with statement 49
Wrapper object 86, 130
Wrapper type 122
Wrapper(A) functor 124
Wrapper(B) functor 124
Wrapper.map 123
wrapping arrays 73
wrapping, unsafe values 122–124
writable property 34
writeDom 143

X

x variable 48
XMLHttpRequest 208

Y

yield keyword 224, 228
yielding 224

Z

zip function 108
zipCode function 33, 45

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault,
and Josip Maras

ISBN: 9781617292859
375 pages
$44.99
June 2016

 JavaScript Application Design
A Build First approach

by Nicolas G. Bevacqua

ISBN: 9781617291951
344 pages
$39.99
January 2015

https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/javascript-application-design
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Node.js in Action, Second Edition
by Mike Cantelon, Alex Young, Marc Harter,
T.J. Holowaychuk, and Nathan Rajlich

ISBN: 9781617292576
500 pages
$49.99
January 2017

Node.js in Practice
by Alex Young and Marc Harter

ISBN: 9781617290930
424 pages
$49.99
December 2014

https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/node-js-in-action-second-edition
https://www.manning.com/books/node-js-in-action-second-edition
https://www.manning.com/books/node-js-in-practice
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Grokking Algorithms
An illustrated guide for programmers and
other curious people

by Aditya Y. Bhargava

ISBN: 9781617292231
256 pages
$44.99
May 2016

Functional Programming in Scala
by Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages
$44.99
September 2014

https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/grokking-algorithms
https://www.manning.com/books/grokking-algorithms
https://www.manning.com/books/functional-programming-in-scala
http://www.manning.com

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Reactive Web Applications
With Scala, Play, Akka, and Reactive Streams

by Manuel Bernhardt

ISBN: 9781633430099
325 pages
$44.99
June 2016

Building the Web of Things
by Dominique D. Guinard and Vlad M. Trifa

ISBN: 9781617292682
375 pages
$34.99
June 2016

https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/reactive-web-applications
https://www.manning.com/books/building-the-web-of-things
https://www.manning.com/books/reactive-web-applications
http://www.manning.com

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book
	How to use this book
	Examples and source code
	Typographical conventions
	About the author
	Author Online

	Part 1—Think functionally
	1 Becoming functional
	1.1 Can functional programming help?
	1.2 What is functional programming?
	1.2.1 Functional programming is declarative
	1.2.2 Pure functions and the problem with side effects
	1.2.3 Referential transparency and substitutability
	1.2.4 Preserving immutable data

	1.3 Benefits of functional programming
	1.3.1 Encouraging the decomposition of complex tasks
	1.3.2 Processing data using fluent chains
	1.3.3 Reacting to the complexity of asynchronous applications

	1.4 Summary

	2 Higher-order JavaScript
	2.1 Why JavaScript?
	2.2 Functional vs. object-oriented programming
	2.2.1 Managing the state of JavaScript objects
	2.2.2 Treating objects as values
	2.2.3 Deep-freezing moving parts
	2.2.4 Navigating and modifying object graphs with lenses

	2.3 Functions
	2.3.1 Functions as first-class citizens
	2.3.2 Higher-order functions
	2.3.3 Types of function invocation
	2.3.4 Function methods

	2.4 Closures and scopes
	2.4.1 Problems with the global scope
	2.4.2 JavaScript’s function scope
	2.4.3 A pseudo-block scope
	2.4.4 Practical applications of closures

	2.5 Summary

	Part 2—Get functional
	3 Few data structures, many operations
	3.1 Understanding your application’s control flow
	3.2 Method chaining
	3.3 Function chaining
	3.3.1 Understanding lambda expressions
	3.3.2 Transforming data with _.map
	3.3.3 Gathering results with _.reduce
	3.3.4 Removing unwanted elements with _.filter

	3.4 Reasoning about your code
	3.4.1 Declarative and lazy function chains
	3.4.2 SQL-like data: functions as data

	3.5 Learning to think recursively
	3.5.1 What is recursion?
	3.5.2 Learning to think recursively
	3.5.3 Recursively defined data structures

	3.6 Summary

	4 Toward modular, reusable code
	4.1 Method chains vs. function pipelines
	4.1.1 Chaining methods together
	4.1.2 Arranging functions in a pipeline

	4.2 Requirements for compatible functions
	4.2.1 Type-compatible functions
	4.2.2 Functions and arity: the case for tuples

	4.3 Curried function evaluation
	4.3.1 Emulating function factories
	4.3.2 Implementing reusable function templates

	4.4 Partial application and parameter binding
	4.4.1 Extending the core language
	4.4.2 Binding into delayed functions

	4.5 Composing function pipelines
	4.5.1 Understanding composition with HTML widgets
	4.5.2 Functional composition: separating description from evaluation
	4.5.3 Composition with functional libraries
	4.5.4 Coping with pure and impure code
	4.5.5 Introducing point-free programming

	4.6 Managing control flow with functional combinators
	4.6.1 Identity (I-combinator)
	4.6.2 Tap (K-combinator)
	4.6.3 Alternation (OR-combinator)
	4.6.4 Sequence (S-combinator)
	4.6.5 Fork (join) combinator

	4.7 Summary

	5 Design patterns against complexity
	5.1 Shortfalls of imperative error handling
	5.1.1 Error handling with try-catch
	5.1.2 Reasons not to throw exceptions in functional programs
	5.1.3 Problems with null-checking

	5.2 Building a better solution: functors
	5.2.1 Wrapping unsafe values
	5.2.2 Functors explained

	5.3 Functional error handling using monads
	5.3.1 Monads: from control flow to data flow
	5.3.2 Error handling with Maybe and Either monads
	5.3.3 Interacting with external resources using the IO monad

	5.4 Monadic chains and compositions
	5.5 Summary

	Part 3—Enhancing your functional skills
	6 Bulletproofing your code
	6.1 Functional programming’s influence on unit tests
	6.2 Challenges of testing imperative programs
	6.2.1 Difficulty identifying and decomposing tasks
	6.2.2 Dependency on shared resources leads to inconsistent results
	6.2.3 Predefined order of execution

	6.3 Testing functional code
	6.3.1 Treating a function as a black box
	6.3.2 Focusing on business logic instead of control flow
	6.3.3 Separating the pure from the impure with monadic isolation
	6.3.4 Mocking external dependencies

	6.4 Capturing specifications with property-based testing
	6.5 Measuring effectiveness through code coverage
	6.5.1 Measuring the effectiveness of testing functional code
	6.5.2 Measuring the complexity of functional code

	6.6 Summary

	7 Functional optimizations
	7.1 Under the hood of function execution
	7.1.1 Currying and the function context stack
	7.1.2 Challenges of recursive code

	7.2 Deferring execution using lazy evaluation
	7.2.1 Avoiding computations with the alternation functional combinator
	7.2.2 Taking advantage of shortcut fusion

	7.3 Implementing a call-when-needed strategy
	7.3.1 Understanding memoization
	7.3.2 Memoizing computationally intensive functions
	7.3.3 Taking advantage of currying and memoization
	7.3.4 Decomposing to maximize memoization
	7.3.5 Applying memoization to recursive calls

	7.4 Recursion and tail-call optimization (TCO)
	7.4.1 Converting non-tail calls to tail calls

	7.5 Summary

	8 Managing asynchronous events and data
	8.1 Challenges of asynchronous code
	8.1.1 Creating temporal dependencies among functions
	8.1.2 Falling into a callback pyramid
	8.1.3 Using continuation-passing style

	8.2 First-class asynchronous behavior with promises
	8.2.1 Future method chains
	8.2.2 Composing synchronous and asynchronous behavior

	8.3 Lazy data generation
	8.3.1 Generators and recursion
	8.3.2 The Iterator protocol

	8.4 Functional and reactive programming with RxJS
	8.4.1 Data as observable sequences
	8.4.2 Functional and reactive programming
	8.4.3 RxJS and promises

	8.5 Summary

	Appendix A—JavaScript libraries used in this book
	Functional JavaScript libraries
	Lodash
	Ramda
	RxJS

	Other libraries used
	Log4js
	QUnit
	Sinon
	Blanket
	JSCheck

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

